
OPERATION & MAINTENANCE INSTRUCTION MANUAL

FIELDBUS TEMPERATURE TRANSMITTER

FOUNDATION

DEC/24 TT302 **VERSION 3**

302

Fieldbus

First in

Specificatinos and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

INTRODUCTION

The **TT302** is from the first generation of FIELDBUS devices. It is a transmitter mainly intended for measurement of temperature using RTDs or thermocouples, but can also accept other sensors with resistance or mV output such as: pyrometers, load cells, resistance position indicators, etc. The digital technology used in the **TT302** enables a single model to accept several types of sensors, an easy interface between the field and the control room and several others features that considerably reduces the installation, operation and maintenance costs.

FIELDBUS is not only a replacement for 4-20 mA or intelligent/smart transmitter protocols. It contains much more. FIELDBUS is a complete system enabling distribution of the control function to equipment in the field.

Some advantages of bi-directional digital communications are known from existing smart transmitter protocols: higher accuracy, multivariable access, remote configuration and diagnostics and multi-dropping of several devices on a single pair of wires. These protocols were not intended to transfer control data, but maintain information. Therefore they were slow and not efficient enough to be used.

The main requirements for Fieldbus were to overcome these problems. Closed loop control with performance like a 4-20 mA system requires higher speed. Since higher speed means higher power consumption, this clashes with the need for intrinsic safety. Therefore a moderately high communication speed was selected, and the system was designed to have minimum communication overhead. Using scheduling, the system controls the variable sampling, the algorithm execution and the communication to optimize the usage of the network, thus achieving high closed loop performance.

Using Fieldbus technology, with its capability to interconnect several devices, very large control schemes can be constructed. In order to be user friendly, the function block concept was introduced (users of SMAR CD600 should be familiar with this, since it was implemented several years ago). The user may now easily build and overview complex control strategies. Another advantage is adding flexibility, the control strategy may be edited without having to rewire or change any hardware.

Now, thanks to Fieldbus, the transmitter accepts two channels, i.e., two measurements. This reduces the cost per channel. Other function blocks are also available. They allow flexibility in control strategy implementation.

The need for Fieldbus implementation in small as well as large systems was considered when developing the entire 302 line of Fieldbus devices. They have the common features of being able to act as a master on the network.

Get the best result of the TT302 by carefully reading these instructions.

WARNING

This Manual is compatible with version 3.XX, where 3 denote software version and XX software release. The indication 3.XX means that this manual is compatible with any release of software version 3.

Waiver of responsibility

The contents of this manual abides by the hardware and software used on the current equipment version. Eventually there may occur divergencies between this manual and the equipment. The information from this document are periodically reviewed and the necessary or identified corrections will be included in the following editions. Suggestions for their improvement are welcome.

Warning

For more objectivity and clarity, this manual does not contain all the detailed information on the product and, in addition, it does not cover every possible mounting, operation or maintenance cases.

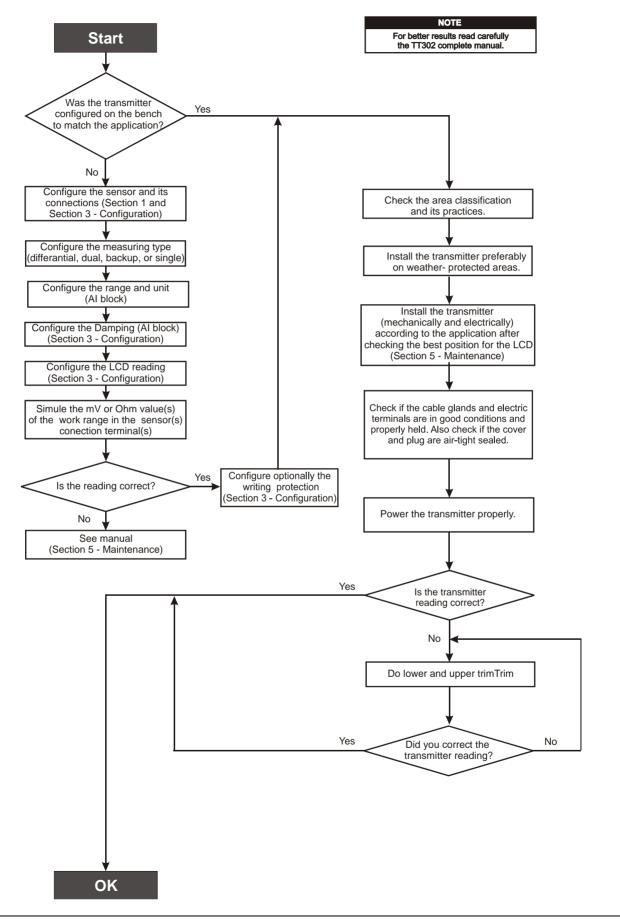
Before installing and utilizing the equipment, check if the model of the acquired equipment complies with the technical requirements for the application. This checking is the user's responsibility.

If the user needs more information, or on the event of specific problems not specified or treated in this manual, the information should be sought from Smar. Furthermore, the user recognizes that the contents of this manual by no means modify past or present agreements, confirmation or judicial relationship, in whole or in part.

All of Smar's obligation result from the purchasing agreement signed between the parties, which includes the complete and sole valid warranty term. Contractual clauses related to the warranty are not limited nor extended by virtue of the technical information contained in this manual.

Only qualified personnel are allowed to participate in the activities of mounting, electrical connection, startup and maintenance of the equipment. Qualified personnel are understood to be the persons familiar with the mounting, electrical connection, startup and operation of the equipment or other similar apparatus that are technically fit for their work. Smar provides specific training to instruct and qualify such professionals. However, each country must comply with the local safety procedures, legal provisions and regulations for the mounting and operation of electrical installations, as well as with the laws and regulations on classified areas, such as intrinsic safety, explosion proof, increased safety and instrumented safety systems, among others.

The user is responsible for the incorrect or inadequate handling of equipments run with pneumatic or hydraulic pressure or, still, subject to corrosive, aggressive or combustible products, since their utilization may cause severe bodily harm and/or material damages.


The field equipment referred to in this manual, when acquired for classified or hazardous areas, has its certification void when having its parts replaced or interchanged without functional and approval tests by Smar or any of Smar authorized dealers, which are the competent companies for certifying that the equipment in its entirety meets the applicable standards and regulations. The same is true when converting the equipment of a communication protocol to another. In this case, it is necessary sending the equipment to Smar or any of its authorized dealer. Moreover, the certificates are different and the user is responsible for their correct use.

Always respect the instructions provided in the Manual. Smar is not responsible for any losses and/or damages resulting from the inadequate use of its equipments. It is the user's responsibility to know and apply the safety practices in his country.

TABLE OF CONTENTS

SECTION 1 - INSTALLATION	1.1
GENERAL	1.1
MOUNTING	
NETWORK WIRING	1.2
BUS TOPOLOGY AND NETWORK CONFIGURATION	
SENSOR WIRING	
INSTALLATION IN HAZARDOUS AREAS	1.6
SECTION 2 - OPERATION	2.1
FUNCTIONAL DESCRIPTION – HARDWARE	2.1
TEMPERATURE SENSORS	2.3
SECTION 3 - CONFIGURATION	3.1
TRANSDUCER BLOCK	
TRANSDUCER BLOCK PARAMETERS DESCRIPTION	
TRANSDUCER BLOCK PARAMETERS TYPES	
HOW TO CONFIGURE A TRANSDUCER BLOCK	
SENSOR TRANSDUCER NUMBER	
JUMPER CONFIGURATION	
SENSOR CONFIGURATION	
HOW TO CONNECT TWO SENSORS TO TT302	
COMPENSATION OF LEAD RESISTANCE FOR DOUBLE SENSOR (RTD OR OHM)	
COLD JUNCTION COMPENSATION CALIBRATION IN TT302 BY THE USER	
CALIBRATION IN TT302 BY THE USER CHANGING UNITS IN TEMPERATURE SENSORS	
TRANSDUCER DISPLAY – CONFIGURATION	
DISPLAY TRANSDUCER BLOCK	
DEFINITION OF PARAMETERS AND VALUES	
PROGRAMMING USING LOCAL ADJUSTMENT.	
J1 JUMPER CONNECTIONS	
W1 JUMPER CONNECTIONS	3.15
LOCAL PROGRAMMING TREE	
SECTION 4 - MAINTENANCE PROCEDURES	4.1
TROUBLESHOUTING	
DISASSEMBLY PROCEDURE	4.2
REASSEMBLY PROCEDURE	
INTERCHANGEABILITY	4.3
RETURNING MATERIALS	
ISOLATION TESTS ON EQUIPMENT HOUSINGS	4.6
SECTION 5 - TECHNICAL CHARACTERISTIC	
ORDERING CODE	5.4
APPENDIX A - CERTIFICATIONS INFORMATION	A.1
APPENDIX B – SRF – SERVICE REQUEST FORM	B.1

Installation Flowchart

INSTALLATION

General

The overall accuracy of temperature and other measurements depends on several variables. Although the transmitter has an outstanding performance, proper installation is essential in order to maximize its performance.

Among all factors which may affect transmitter accuracy, environmental conditions are the most difficult to control. There are, however, ways of reducing the effects of temperature, humidity and vibration.

Locating the transmitter in areas protected from extreme environmental changes can minimize temperature fluctuation effects.

In warm environments, the transmitter should be installed in such a way as to avoid, as much as possible, direct exposure to the sun. Installation close to lines and vessels subjected to high temperatures should also be avoided. For temperature measurements, sensors with cooling-neck can be used or the sensor can be mounted separately from the transmitter housing.

Use of sunshades or heat shields to protect the transmitter from external heat sources should be considered.

Humidity is fatal for electronic circuits. In areas subjected to high relative humidity, the O-rings for the electronic housing covers must be correctly placed and the covers must be completely closed by tightening them by hand until you feel the O-rings being compressed. Do not use tools to close the covers. Removal of the electronics cover in the field should be reduced to the minimum necessary, since each time it is removed, the circuits are exposed to humidity. The electronic circuit is protected by a humidity proof coating, but frequent exposure to humidity may affect the protection provided. It is also important to keep the covers tightened in place. Every time they are removed, the threads are exposed to corrosion, as painting cannot protect these parts. Code-approved sealing methods should be employed on conduit entering the transmitter.

Connecting the sensor as close to the transmitter as possible and using proper wires (See Section 2 Operation), can decrease measurement error.

Mounting

The transmitter may be mounted in two basic ways:

- Separated from the sensor, using optional mounting brackets.
- Mounted on the sensor assembly.

It can be mounted in several different positions using the bracket, as shown in Figure 1.3 - Dimensional Drawing and Mounting Positions. You can also see in the Figure 1.3 how the conduit inlets for electrical connection are used to mount the sensor integral to the temperature transmitter.

For better visibility, the digital display may be rotated in steps of 90° . (See Figure 4.1 – Four Possible Positions of the Display).

Network Wiring

Access the terminal block by removing the Electrical Connection Cover. This cover can be locked closed by the cover locking screw (See Figure 1.1 - Cover Locking). To release the cover, rotate the locking screw clockwise.

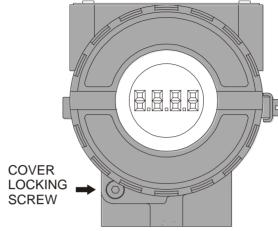


Figure 1.1 - Cover Locking

Cable access to wiring connections are obtained by one of the two conduit outlets. Conduit threads should be sealed by means of code-approved sealing methods. The unused outlet connection should be plugged accordingly.

The wiring block has screws on which fork or ring type terminals can be fastened. (See Figure 1.2 - Ground Terminals).

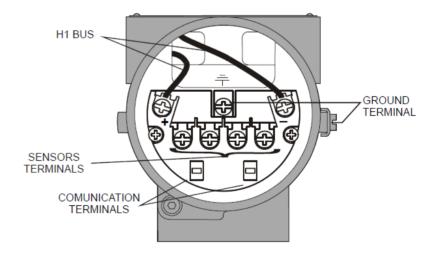


Figure 1.2 - Ground Terminals

For convenience, there are three ground terminals: one inside the cover and two externally, located close to the conduit entries.

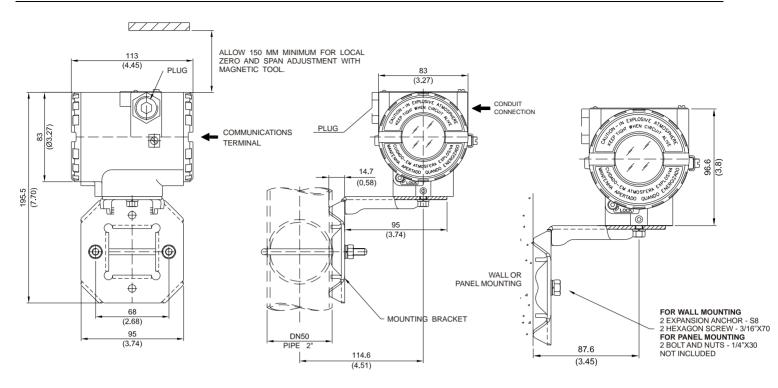


Figure 1.3 - Dimensional Drawing and Mounting Positions

The **TT302** uses the 31.25 kbit/s voltage mode option for the physical signaling. All other devices on the same bus must use the same signaling. All devices are connected in parallel along the same pair of wires.

Various types of Fieldbus devices may be connected on the same bus. The **TT302** is powered via the bus. The limit for such devices is 16 for one bus for non-intrinsically safe requirement.

In hazardous areas, the number of devices may be limited to 6 devices by intrinsically safe restrictions.

The **TT302** is protected against reverse polarity and can withstand ±35 VDC without damage.

Use of twisted pair cables is recommended. It is also recommended to ground shield of shielded cables at one end only. The non-grounded end must be carefully isolated.

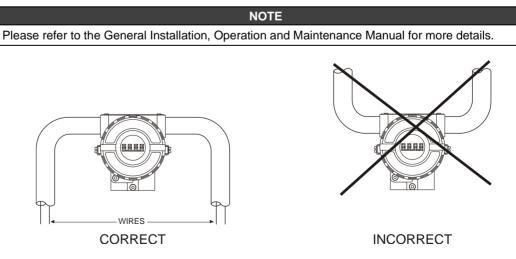


Figure 1.4 – Conduit Installation Diagram

Bus Topology and Network Configuration

Special requirements are applied to the terminator when used in a safety bus.

Intrinsic Safety Barrier

When intrinsic safety is required, a barrier should be inserted on the trunk between the power supply and the terminator.

The barrier's impedance should be greater than 460 Ω at 7.8 to 39 kHz.

The capacitance measured on both ends should not have a difference greater than 250pF from each other. The DF47 is recommended.

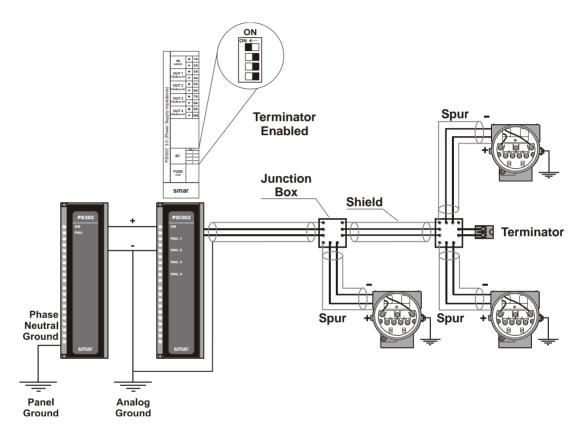
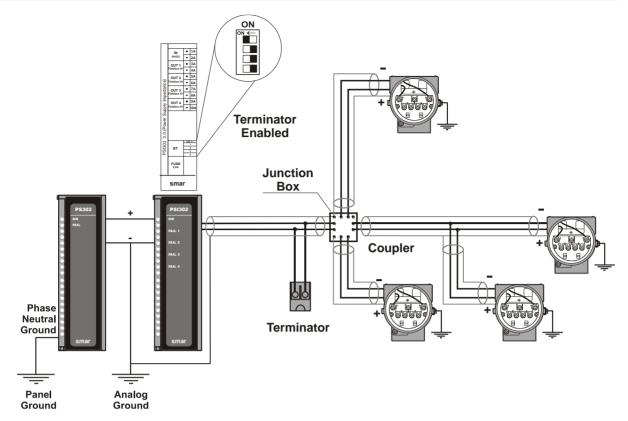



Figure 1.5 - Bus Topology

Figure 1.6 - Bus Topology

Sensor Wiring

The TT302 accepts up to two sensors and may operate in one of four modes:

- Single channel single sensor measurement
- Dual channel dual sensor measurement
- Single channel dual sensor differential measurement.
- Single channel dual sensor backup measurement.

When the sensor is dual, the sensor connected between terminals 3 and 4 is associated with the first transducer, and the sensor connected between terminals 2 and 4 is associated with the second transducer.

Avoid routing sensor wiring close to power cables or switching equipment.

In accordance with connection and sensor types, the terminal blocks shall be wired as shown in figure below (See Figure 1.7).

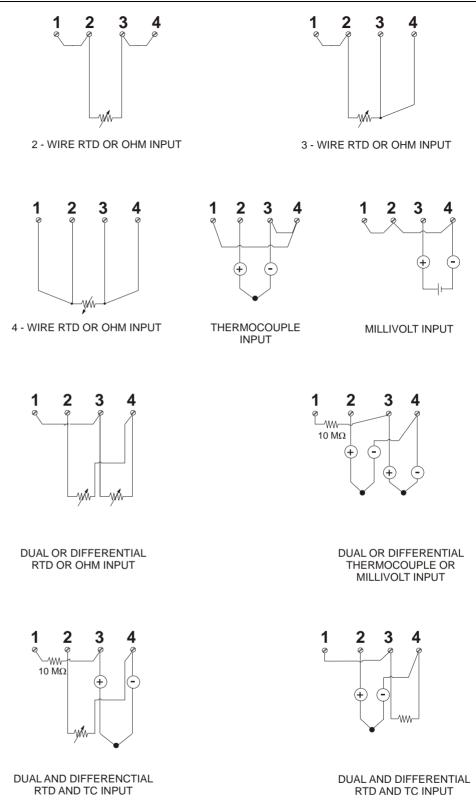


Figure 1.7 - Sensor Wiring

Installation in Hazardous Areas

See Appendix A.

OPERATION

The **TT302** accepts signals from mV generators such as thermocouples or resistive sensors such as RTDs. The criterion is that the signal is within the range of the input. For mV, the range is -50 to 500 mV and for resistance, 0-2000 Ohm.

Functional Description – Hardware

The function of each block is described below.

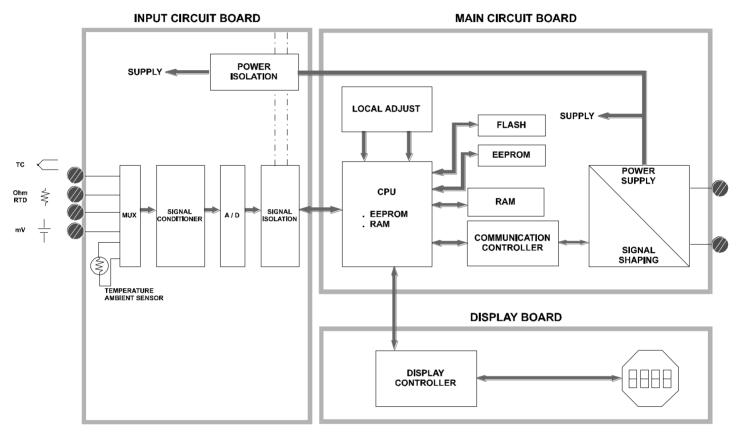


Figure 2.1 - TT302 Block Diagram

MUX Multiplexer

The MUX multiplexes the sensor terminals to the signal conditioning section ensuring that the voltages are measured between the correct terminals.

Signal Conditioner

Its function is to apply the correct gain to the input signals to make them suit the A/D - converter.

A/D Converter

The A/D converts the input signal to a digital format for the CPU.

Signal Isolation

Its function is to isolate the control and data signal between the input and the CPU.

(CPU) Central Processing Unit, RAM, PROM and EEPROM

The CPU is the intelligent portion of the transmitter, being responsible for the management and operation of measurement, block execution, self-diagnostics and communication. The program is stored in a PROM. For temporary storage of data there is a RAM. The data in the RAM is lost if the power is switched off. However there is a nonvolatile EEPROM where data that must be retained is stored. Examples, of such data are trim, calibration, block configuration and identification data.

Communication Controller

It monitors line activity, modulates and demodulates communication signals and inserts and deletes start and end delimiters.

Power Supply

Takes power of the loop-line to power the transmitter circuitry.

Power Isolation

Just like the signals to and from the input section, the power to the input section must be isolated. Isolation is achieved by converting the DC supply into a high frequency AC supply and galvanically separating it using a transformer.

Display Controller

Receives data from the CPU informing which segments of the Liquid Crystal Display, should be turned on.

Local Adjustment

There are two switches that are magnetically activated. They can be activated by the magnetic tool without mechanical or electrical contact.

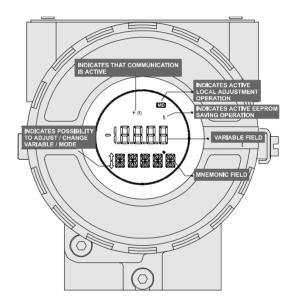


Figure 2.2 - LCD Indicator

Temperature Sensors

The **TT302**, as previously explained, accepts several types of sensors. The **TT302** is specially designed for temperature measurement using thermocouples or Resistive Temperature Detectors (RTDs).

Some basic concepts about these sensors are presented below.

Thermocouples

Thermocouples are constructed with two wires made from different metals or alloys joined at one end, called measuring junction or "hot junction". The measuring junction should be placed at the point of measurement. The other end of the thermocouple is open and connected to the temperature transmitter. This point is called reference junction or cold junction.

For most applications, the **Seebeck** effect is sufficient to explain thermocouple behavior as following:

How the Thermocouple Works (Seebeck Effect)

When there is a temperature difference along a metal wire, a small electric potential, unique to every alloy, will occur. This phenomenon is called *Seebeck* effect. When two wires of dissimilar metals are joined at one end, and left open at the other, a temperature difference between the two ends will result in a voltage since the potentials generated by the dissimilar materials are different and do not cancel each other out. Now, two important things must be noted. First: the voltage generated by the thermocouple is proportional to the difference between the measuring-junction and the cold junction temperatures. Therefore the temperature at the reference junction must be added to the temperature derived from the thermocouple output, in order to find the temperature measured. This is called cold junction compensation, and is done automatically by the **TT302**, which has a temperature sensor at the sensor terminals for this purpose. Secondly, if the thermocouple wires are not used, all the way to the terminals of the transmitter (e.g., copper wire is used from sensor-head or marshaling box) will form new junctions with additional Seebeck effects. It will be created and ruin the measurement in most cases, since the cold-junction compensation will be done at the wrong point.

NOTE

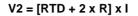
Use thermocouple wires or appropriate extension wires all the way from sensor to transmitter.

The relation between the measuring junction temperature and the generated mili-voltage is tabulated in thermocouple calibration tables for standardized thermocouple types, the reference temperature being 0 °C.

Standardized thermocouples that are commercially used, whose tables are stored in the memory of the **TT302**, are the following:

- NBS (B, E, J, K, N, R, S & T)
- DIN (L & U)

Resistive Temperature Detectors (RTDs)


Resistance Temperature Detectors, most commonly known as RTD's, are based on the principle that the resistance of metal increases as its temperature increases. Standardized RTDs, whose tables are stored in the memory of the **TT302**, are the following:

- JIS [1604-81] (Pt50 & Pt100)
- IEC, DIN, JIS [1604-89] (Pt50, Pt100 & Pt500)
- GE (Cu10)
- DIN (Ni120)

For correct measurement of RTD temperature, it is necessary to eliminate the effect of the resistance of the wires connecting the sensor to the measuring circuit. In some industrial applications, these wires may be hundreds of meters long. This is particularly important at locations where the ambient temperature changes constantly.

The **TT302** permits a 2-wire connection that may cause measuring errors, depending on the length of connection wires and on the temperature to which they are exposed. (See Figure 2.3 - Two-Wire Connection).

In a 2-wire connection, the voltage V2 is proportional to the RTD resistance plus the resistance of the wires.

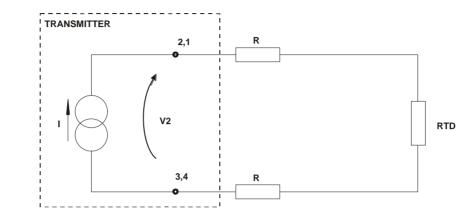


Figure 2.3 - Two-Wire Connection

In order to avoid the resistance effect of the connection wires, it is recommended to use a 3-wire connection (See Figure 2.4 – Three-Wire Connection) or a 4-wire connection (See Figure 2.5 - Four - Wire Connection).

In a 3-wire connection, terminal 3 is a high impedance input. Thus, no current flows through that wire and no voltage drop is caused. The voltage V2-V1 is independent of the wire resistances since they will be cancelled, and is directly proportional to the RTD resistance alone.

$V2-V1 = [RTD + R] \times I - R \times I = RTD \times I$

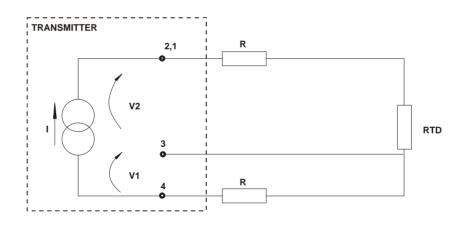


Figure 2.4 - Three – Wire Connection

In a 4-wire connection, terminals 2 and 3 are high impedance inputs. Thus, no current flows through those wires and no voltage drop is caused. The resistance of the other two wires is not of interest, since there is no measurement registered on them. Hence the voltage V2 is directly proportional to the RTD resistance.

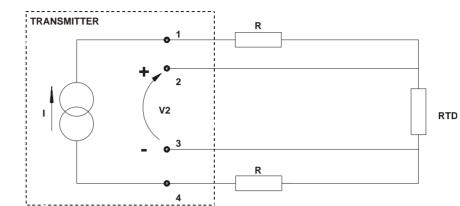


Figure 2.5 - Four - Wire Connection

A differential or dual channel connection is similar to the two-wire connection and gives the same problem (See Figure 2.6 - Differential or Dual Connection). The resistance of the wires will be measured and do not cancel each other out in a temperature measurement, since linearization will affect them differently.

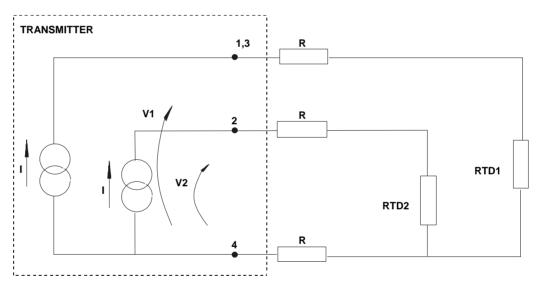


Figure 2.6 - Differential or Dual Connection

CONFIGURATION

One of the many advantages of Fieldbus is that device configuration is independent of the configurator. The **TT302** may be configured by a third party terminal or console operator. Any particular configurator is therefore not addressed here.

The **TT302** contains two input transducer blocks, one resource block, one display transducer block and other function blocks.

For explanation and details of function blocks, see the "Function Blocks Manual".

Transducer Block

Transducer block insulates function blocks from the specific I/O hardware (sensors and actuators). The transducer block controls the access to I/O through manufacturer specific implementation. This allows the transducer block to be executed as frequently as necessary to obtain good data from sensors without burdening the function blocks that uses the data. It also insulates the function blocks from the manufacturer specific characteristics of certain hardware.

By accessing the hardware, the transducer block can get data from the I/O or pass control data to it. The connection between Transducer block and Function block is called channel. These blocks can exchange data through the interface.

Normally, transducer blocks perform functions, such as linearization, characterization, temperature compensation, hardware control and data exchange.

Transducer Block Parameters Description

The parameters described below are used to configure the transducer block, having direct influence in the hardware.

PARAMETER	DESCRIPTION
ST REV	Number of changes in the static parameter.
TAG_DESC	Transducer block tag.
STRATEGY	Parameter not processed by the Transducer block.
ALERT_KEY	Identification number in the plant.
MODE_BLK	Operation mode of the Transducer block.
BLOCK_ERR	Hardware and software status associated with the Transducer.
UPDATE_EVT	Static parameters alarm.
BLOCK_ALM	Alarm used by the configuration or by the hardware.
TRANSDUCER_DIRECTORY	Number and initial index of the Transducer inside the Transducer block.
TRANSDUCER TYPE	Type of Transducer according to its class.
TRANSDOCER_TIFE	101 - Standard Temperature with calibration
XD_ERROR	Used to show the calibration status.
COLLECTION_DIRECTORY	Number, initial index and description device item of the Transducer, inside the Transducer block.
PRIMARY_VALUE_TYPE	Measurement type represented by the primary variable. 104 – Process Temperature 106 – Differential Temperature 120 – Backup Temperature
PRIMARY VALUE	Measured variable and available status for the function block.
PRIMARY_VALUE_RANGE	Upper and lower limits, engineering unit, and number of decimal places used to designate the primary variable.
CAL_POINT_HI	Upper calibration value.
CAL_POINT_LO	Lower calibration value.
CAL_MIN_SPAN	Minimum span value allowed in the calibration. This minimum span is necessary to make sure that the two calibrated points (lower and upper) are not too close, when the calibration is done.
CAL_UNIT	Engineering unit used in the lower and upper calibration.
SENSOR_TYPE	Sensor type 128 – Pt100 IEC 129 – Pt100 JIS 131 – Pt500 IEC 132 – Ni 120 DIN 133 – Cu 10 GE 170 – Pt 50 IEC
	171 – Pt 50 JIS 181 – Ohm 100

PARAMETER	DESCRIPTION
PARAMETER	DESCRIPTION 180 – Ohm 400
	104 – Ohm 2000
	134 – TC B NBS
	136 – TC E NBS
	137 – TC J NBS
	138 – TC K NBS
	139 – TC N NBS
	140 – TC R NBS
	141 – TC S NBS
	142 – TC T NBS
	143 – TC L DIN
	144 – TC U DIN
	191 – mV 22
	190 – mV 100
	103 – mV 500
SENSOR_RANGE	Lower and upper limits, engineering unit and number of decimal point of the sensor.
SENSOR_SN	Sensor serial number.
SENSOR_CAL_METHOD	Last method of calibration of the sensor.
SENSOR CAL LOC	Localization of the last calibration of the sensor. That is the place where the calibration was done.
SENSOR CAL DATE	Date of the latest calibration of the sensor.
SENSOR_CAL_WHO	Name of the person responsible for the last calibration of the sensor.
	Number of sensor wires connected to the equipment terminal blocks.
	1 – Dual two wires
SENSOR_CONNECTION	2 – Two wires
	3 – Three wires
	4 – Four wires
SECONDARY_VALUE	Secondary variable related to the sensor.
SECONDARY_VALUE_UNIT	Engineering unit used by the secondary variable.
MODULE_SN	Module serial number.
	Type of action of the cold junction compensation.
SECONDARY_VALUE_ACTION	0 – disabled
	1 – enabled
	Parameter used to restore or save the configuration data.
	1 – Factory Cal Restore
	2 – Last Cal Restore
	3 – Default Data Restore
	4 – Shut-Down Data Restore
BACKUP_RESTORE	5 – Sensor Data Restore
	11 – Factory Cal Backup
	12 – Last Cal Backup
	14 – Shut-Down Data Backup
	15 – Sensor Data Backup
CAL POINT HI LAST	0 - None
CAL_POINT_HI_LAST	Upper calibration saved by the backup_restore. Lower calibration saved by the backup_restore.
CAL_POINT_LO_LAST	Factory upper calibration saved by the backup_restore
CAL_POINT_LO_FACTORY	Factory lower calibration saved by the backup_restore
ORDERING_CODE	Product information to manufacture.
	Automatic compensation of the lead resistance for two wire RTD sensors or dual two wire RTD
	sensors.
TWO_WIRES_COMPENSATION	0 – Disabled
	1 – Enabled
	Number of Transducer being used:
SENSOR_TRANSDUCER_NUMBER	1 – First Transducer (this one should always exist)
	2 – Second Transducer (It exists if the type of connection of the first transducer is dual or two wires)

Transducer Block Parameters Types

Parameter	Data Type	Storage	Size	Initial Value	Class	View
ST_REV	Unsigned16	S	2	0	R	1,2,3,4
TAG_DESC	Octet String	S	32	Nulls	R/W	
STRATEGY	Unsigned16	S	2	0	R/W	4
ALERT_KEY	Unsigned8	S	1	0	R/W	4
MODE_BLK	DS-69	Mix	4	AUTO	R/W	1,3
BLOCK_ERR	Bit String	D	2	*	R	1,3
UPDATE_EVT	DS-73	D	5	*	R	

Parameter	Data Type	Storage	Size	Initial Value	Class	View
BLOCK_ALM	DS-72	D	13	*	R	
TRANSDUCER_DIRECTORY	Array of Unsigned16	N	Variable	*	R	
TRANSDUCER_TYPE	Unsigned16	N	2	101	R	1,2,3,4
XD_ERROR	Unsigned8	D	1	*	R	1,3
COLLECTION_DIRECTORY	Array of Unsigned16	N	Variable	*	R	
PRIMARY_VALUE_TYPE	Unsigned16	S	2	104	R/W	2
PRIMARY_VALUE	DS-65	D	5	0	R	1,3
PRIMARY_VALUE_RANGE	DS-68	NS	11	-200/850/1001/1	R	4
CAL_POINT_HI	Float	S	4	850.0	R/W	2
CAL_POINT_LO	Float	S	4	-250.0	R/W	2
CAL_MIN_SPAN	Float	Ν	4	10.0	R	4
CAL_UNIT	Unsigned16	S	2	1001	R/W	4
SENSOR_TYPE	Unsigned16	S	2	128	R/W	4
SENSOR_RANGE	DS-68	N	11	-200/850/1001/1	R	4
SENSOR_SN	Unsigned Long	N	4	0	R	4
SENSOR_CAL_METHOD	Unsigned8	S	1	103	R	4
SENSOR_CAL_LOC	Visible String	S	32	NULL	R/W	4
SENSOR_CAL_DATE	Time of Day	S	7	0	R/W	4
SENSOR_CAL_WHO	Visible String	S	32	NULL	R/W	4
SENSOR_CONNECTION	Unsigned8	S	1	3	R/W	4
SECONDARY_VALUE	DS-65	D	5	0	R	3
SECONDARY_VALUE_UNIT	Unsigned16	S	2	1001	R/W	4
MODULE_SN	Unsigned Long	N	4	0	R	4
SECONDARY_VALUE_ACTION	Unsigned8	S	1	1	R/W	
BACKUP_RESTORE	Unsigned8	S	1	0	R/W	4
CAL_POINT_HI_LAST	Float	S	4	850.0	R	2
CAL_POINT_LO_LAST	Float	S	4	-200.0	R	2
CAL_POINT_HI_FACTORY	Float	S	4	850.0	R	2
CAL_POINT_LO_FACTORY	Float	S	4	-200.0	R	2
ORDERING_CODE	Visible String	S	50	Null	R/W	
TWO_WIRE_COMPENSATION	Unsigned8	D	1	1	R/W	
SENSOR_TRANSD_NUMBER	Unsigned8	S	1	0	R/W	4

D: Dynamic

N: Non-volatile

S: Static

How to Configure a Transducer Block

The transducer block has an algorithm, a set of contained parameters (it means you are not able to link these parameters to other blocks or publish the link via communication), and a channel connecting it to a function block.

The algorithm describes the behavior of the transducer as a data transfer function between the I/O hardware and other function block. The set of contained parameters defines the user interface to the transducer block. They can be divided into Standard and Manufacturer Specific.

The standard parameters are defined specifically to each device class such as, pressure, temperature, etc., no matter is the manufacturer. Oppositely, the manufacturers specific are only defined by the manufacturer. As common manufacturer specific parameters, we have calibration settings, material information, linearization curve, etc.

When you perform a standard routine such as calibration, you are conducted step by step by a method. The method is generally defined as guideline to help the user make common tasks. **SYSCON** identifies each method associated to the parameters and enables the interface to it.

Sensor Transducer Number

The Sensor Transducer Number associates the sensor to the transducer. It can be set from one up to two, in case of dual sensor.

Jumper Configuration

In order to work properly, the jumpers J1 and W1 located in the TT302 main board must be correctly configured.

J1 is responsible to enable the AI block simulate mode.

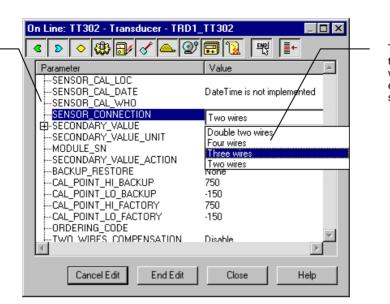
W1 is responsible to enable the local adjustment.

Sensor Configuration

It is necessary to configure the transducer number allocated to its task. The parameter SENSOR_TRANSDUCER_NUMBER should be set to 1.

Figure 3.1 – Transducer Number Configuration

It is possible to configure the type of connection and sensor by means of SENSOR_TYPE and SENSOR_CONNECTION parameters. The connection and sensor types available are listed in Table 3.1 - Sensor Type Table and Table 3.2 - Type of Connection Table, as well as the corresponding value.


This list contains: Thermocouples, RTDs, Ohm and millivoltage.

This parameter selects the type of sensor attached to the **TT302** in order to measure temperature.

arameter	Value 🔺
CAL_MIN_SPAN	30
CAL_UNIT	°C.
-SENSOR_TYPE	T/C Type J NBS 💌
-SENSOR_RANGE	T/C Type J NBS
SENSOR_SN	T/C Type K NBS
SENSOR_CAL_METHOD	T/C Type L DIN
SENSOR_CAL_LOC	T/C Type N NBS
SENSOR_CAL_DATE SENSOR CAL WHO	Date i me is not implemented
SENSOR_CONNECTION	Two wires
SECONDARY VALUE	Two wiles
-SECONDARY VALUE UNIT	°C
-MODULE SN	n i i i i i i i i i i i i i i i i i i i
-SECONDARY VALUE ACTION	
-BACKLIP BESTORE	None
1	×

Figure 3.2 – Sensor Type Configuration

NOTE There are no 3 or 4 wire connections for millivoltage sensors. This parameter selects the type of sensor connection. The options here will depend on Sensor Type chosen as described above.

This list contains the number of wires available for each type of sensor.

Figure 3.3 – Sensor Type Connection Configuration

SENSOR_TYPE	ADJUST LOCAL VALUE
Pt 100 IEC	128
Pt 100 JIS	129
Pt 500 IEC	131
Ni 120 DIN	132
Cu 10 CE	133
Pt 50 IEC	170
Pt 50 JIS	171
Ohm 100	181
Ohm 400	180
Ohm 2,000	104
TC B NBS	134
TC E NBS	136
TC J NBS	137
TC K NBS	138
TC N NBS	139
TC R NBS	140
TC S NBS	141
TC T NBS	142
TC L DIN	143
TC U DIN	144
mV 22	191
mV 100	190
mV 500	103

Table 3.1 - Sensor Type Table

CONNECTION	ADJUST LOCAL VALUE
DOUBLE TWO WIRE	1
TWO WIRE	2
THREE WIRE	3
FOUR WIRE	4

Table 3.2 - Type of Connection Table

How to Connect Two Sensors to TT302

Transmitters series **TT302** are capable of operating simultaneously with two sensors, using two transducer blocks, if necessary. Configuration types in two sensors operation are as follows:

Differential – In this case there is only one transducer. Transducer output is the difference between the readout of sensor 1 (between terminals 3 and 4) and the readout of sensor 2 (between terminals 2 and 4). The PRIMARY_VALUE_TYPE parameter should be configured as differential temperature.

Backup – In this case there is only one transducer.

When the first sensor (between terminals 3 and 4) breaks down, the second sensor (between terminals 2 and 4) will supply the signal to the transducer.

Double - In this case there are two transducers. Each sensor provides a signal to its respective transducer.

In order to be able to operate with sensors in the backup or differential modes, the parameter PRIMARY_VALUE_TYPE must be set. In order to operate with double sensors, the parameter SENSOR_CONNECTION must be set.

On Line: TT302 - Transducer - TRD1_TT302							
This parameter sets — the type of	─\ < > < 🕲 🖌 < 🖉						
calculation that	Parameter	Value					
should be done for	TRANSDUCER_DIRECTORY	<u> </u>					
each transducer.		Standard Temperature with cal 🖊 👘					
		Default value set					
	COLLECTION_DIRECTORY (J					
		Process temperature					
	D. PRIMARY VALUE BANGE	Backup					
		Differential temperature /					
		Process temperature					
		30					
		°C					
		T/C Type J NBS					
	I ⊕-SENSOR_RANGE	n					
		User trim standard calibration					
	Cancel Edit End Edit	Close Help					

This list contains the normal option, Backup and Differential type of temperature calculation.

Figure 3.4 – Primary Variable Type Configuration

Compensation of Lead Resistance for Double Sensor (RTD or Ohm)

When 2 wire resistive sensors are used, the readout is not a very accurate because of the resistance of leads connecting sensor to transmitter. In order to reduce this error, it is possible to configure the transmitter to compensate for a constant lead resistance by means of parameter LEAD_RESISTANCE_VALUE.

As explained, 2 wire resistive sensors are not accurate due to lead resistance. For this reason, 3 or 4 wire sensors are usually preferred.

With **TT302** is possible to connect two sensors to the terminal block. Due to space limitations in the terminal block, it is only possible to connect two 2-wire sensors. In order to optimize lead resistance compensation for these sensors and to minimize error, there is the parameter TWO_WIRES_COMPENSATION that automatically calculates the lead resistance. All the user is required to do is to short-circuit the sensor in the field and to actuate this parameter (Enable). After undo the short circuit the measurement will be more accuracy.

Dff Line: TT - Transducer - TRD2_TT				
< > < (1) < (1)	🗊 🔃 🕾	+		1 <mark>S I</mark>
Parameter	Value			
ORDERING_CODE ORDERING_CODE ORDERING_COMPENSATION SENSOR_TRANSDUCER_NUMBER FACTORY_DIGITAL_INPUTS OFACTORY_GAIN_REFERENCE FACTORY_TERMINAL_REFERENCE	, Enable Disable Enable			
Cancel Edit	End Edit	Clear	Close	Help

Figure 3.5 – Lead Resistance Compensation

Cold Junction Compensation

The cold junction compensation for thermocouple sensors is done automatically, but it can be disabled by writing DISABLE on the parameter SECONDARY_VALUE_ACTION.

0ff Line: TT - Transducer - TRD2_TT				- 🗆 ×
Parameter SENSOR_CAL_DATESENSOR_CAL_WHOSENSOR_CONNECTION SECONDARY_VALUESECONDARY_VALUE_UNITMODULE_SNSECONDARY_VALUE_ACTIONBACKUP_RESTORECAL_POINT_IL_BACKUPCAL_POINT_IL_FACTORYFACTORY_TERMINAL_REFERENCEFACTORY_TERMINAL_REFERENCEFACTORY_TERMINAL_REFERENCEFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORYFACTORY_TERMINAL_POINT_FACTORY	Value Disable Enable			
Cancel Edit	End Edit	Clear	Close	Help

Figure 3.6 – Cold Junction Compensation

Calibration in TT302 by the User

The electronics of **TT302** is very stable in time, not requiring further calibrations after manufacturer's calibration. However, if the client decides to use his reference to calibrate the **TT302**, this may be done through the parameters CAL_POINT_LO and CAL_POINT_HI. Always use two points as reference when trim is performed; never consider only one point as a reference.

NOTE

Every time the sensor is changed, the TRIM values are reset. If a TC is used, it is not necessary to disable the cold Junction Compensation before starting calibration procedures. Trim is not available for TT using two sensors and it is not necessary to set the Transducer Block to Out of Service.

The PRIMARY_VALUE parameter is always used to inform the current reading of the input sensor.

In order to do the Lower Trim, first put the sensor into a place with known temperature. If the PRIMARY_VALUE parameter shows a temperature different from the expected, the Lower trim should be done by writing the desired temperature in the CAL_POINT_LO parameter. The adjust trim results can be seen in the PRIMARY_VALUE parameter.

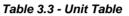
Off Line: TT - Transducer - TRD2_TT					
< > < 🖓 🗗 🖉 🕰	8	<u> हमल</u>	+		S Da
Parameter	Value				
COLLECTION_DIRECTORY PRIMARY_VALUE_TYPE PRIMARY_VALUE PRIMARY_VALUE PRIMARY_VALUE RANGE					
CAL_POINT_HI	850				
CAL_POINT_LO CAL_MIN_SPAN CAL_UNIT SENSOR_TYPE SENSOR_RANGE SENSOR_CAL_METHOD SENSOR_CAL_METHOD SENSOR_CAL_DATE SENSOR_CAL_DATE SENSOR_CAL_WHO SENSOR_CAL_WHO SENSOR_CONNECTION SECONDARY_VALUE SECONDARY_VALUE_UNIT	-200				
Cancel Edit	Edit]	lear	Close	Help

Figure 3.7 – Calibration of the Lower Trim - TT302

In order to do the Upper Trim, first put the sensor into a place with a higher temperature than the lower calibration point. If the PRIMARY_VALUE parameter shows a temperature different from the expected, the Upper trim should be done by writing the desired temperature in the CAL_POINT_HI parameter. The adjust trim results can be seen in the PRIMARY_VALUE parameter.

Off Line: TT - Transducer - TRD2_TT					
۷ 💊 🕸 🗗 🖉 🔍		백 문			DậD
Parameter	Value				-
COLLECTION_DIRECTORY PRIMARY_VALUE_TYPE PRIMARY_VALUE PRIMARY_VALUE RANGE					
CAL_POINT_HI	850				
CAL_POINT_LOCAL_MIN_SPANCAL_UNITSENSOR_TYPESENSOR_BANGESENSOR_CAL_METHODSENSOR_CAL_LOCSENSOR_CAL_LOCSENSOR_CAL_DATESENSOR_CAL_WHOSENSOR_CAL_WHOSENSOR_CONNECTIONSECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUESECONDARY_VALUE	-200				
				<u> </u>	
Cancel Edit	Edit	Clear	Close	Help	

Figure 3.8 – Calibration of the Upper Trim - TT302


Trim is not available for TT302 using two sensors in the backup or differential mode.

Changing Units in Temperature Sensors

The following units are available for temperature sensors: Celsius, Rankine, Kelvin and Fahrenheit. The units values are shown in Table 3.3 - Unit Table.

The unit can be changed in the AI block by the parameter XD_SCALE.

UNIT	VALUE
KELVIN	1000
CELSIUS	1001
FAHRENHEIT	1002
RANKINE	1003

f Line: TT - Analog Inp	ut - AI1_TT					
8 2 4 4 5	1 🔺 💇 🚍 🔞	100 I+ 2			L <mark>S</mark>	Dą
Parameter	Value			Offset	Han	
-STRATEGY				3	RW	
-ALERT_KEY				4	RW	
⊕-MODE_BLK				5		
-BLOCK_ERR				6	RO	
±PV				7		
±)-0UT				6 7 8 9		
∃-SIMULATE				9		
È-XD_SCALE				10		
EU_100				.1	RW	
EU_0				.2	RW	
UNITS_INDEX	°C		+	.3	RW	
iDECIMAL	°C			.4	RW	
È-OUT_SCALE	°F		<u> </u>	11		
È-GRANT_DENY	*B			12		
IO_OPTS	ĸ		-	13	RW	
-STATUS_OPTS	1.4		20.00	14	RW	
CHANNEL				15	RW	
L_TYPE				16	RW	-
<u>í</u>					Þ	
Ca	ncel Edit End Edit	Clear	Close		Help	

Figure 3.9 – Temperature Sensor Unit

Transducer Display – Configuration

Using the SYSCON is possible to configure the Display Transducer block. As the name described it is a transducer due the interfacing of its block with the LCD hardware.

The Transducer Display is treated as a normal block by **SYSCON**. It means, this block has some parameters can be configured according to customer's needs. (See the Figure 3.11 – Creating Transducers and Function Blocks).

The user can choose the parameters to be shown at LCD display, they can be parameters just for monitoring purpose or for acting locally in the field devices by using a magnetic tool.

Configuration

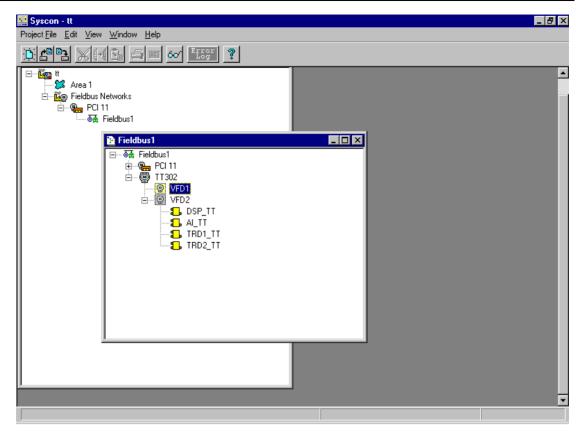


Figure 3.10 – Creating Transducers and Function Blocks

Display Transducer Block

There are seven groups of parameters which may be pre-configured by the user in order to enable a possible configuration by means of the local adjustment. As an example, let's suppose that you don't want to show some parameters; in this case, simply write an invalid Tag in the parameter. By doing this, the device will not take the parameters related (indexed) to its Tag as valid parameters.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store	Description
7	BLOCK_TAG_PARAM	VisibleString			None	S	This is a tag of the block to which the parameter belongs to use up to a maximum of 32 characters.
8	INDEX_RELATIVE	Unsigned16	0-65535		None	S	This is the index related to the parameter to be actuated or viewed $(1, 2)$.
9	SUB_INDEX	Unsigned8	1-255		None	S	To visualize a certain tag, opt for the index relative equal to zero, and for the sub-index equal to one.
10	MNEMONIC	VisibleString			None	S	This is the mnemonic for the parameter identification (maximum of 16 characters). Choose the mnemonic, preferably with no more than 5 characters because, this way, it will not necessary to rotate it on display.
11	INC_DEC	Float			None	S	It is the increment and decrement in decimal units when the parameter is Float or Float Status time, or integer, when the parameter is in whole units.
12	DECIMAL_POINT_NUMBER	Unsigned8	0-4		None	S	This is the number of digits after the decimal point (0 to 3 decimal digits)

Definition of Parameters and Values

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store	Description
13	ACCESS	Unsigned8	Monit/Action		None		The access allows the user to read, in the case of the "Monitoring" option, and to write when "action" option is selected, and then the display will show the increment and decrement arrows.
14	ALPHA_NUM	Unsigned8	Mnem/Value		None	S	These parameters include two options: value and mnemonic. In option value it is possible to display data both in the alphanumeric and in the numeric fields, this way, in the case of a data higher than 10000, it will be shown in the alphanumeric field.
63	DISPLAY_REFLESH	Unsigned8	1		None	D	Update the display transducer block configuration. Used in online monitoring.

In option mnemonic, the display may show the data in the numeric field and the mnemonic in the alphanumeric field.

In case you wish to visualize a certain tag, opt for the index relative equal to zero, and for the subindex equal to one (refer to paragraph Structure Block in the Function Blocks Manual).

0	n Line: SMAR_DP_XMTR - Displa	y - DSP_BLK 📃 🗖 🛛	×
	< D 🔷 🗱 🗗 🖉 🕰 🖉	2 🖬 🔃 🛒 📑	
	Parameter	Value 🔺	
	BLOCK_TAG_PARAM_1	TRD_BLK	
	INDEX_RELATIVE_1	14	
	SUB_INDEX_1	2	
	MNEMONIC_1	P_VAL	
	INC_DEC_1	0.25	
	DECIMAL_POINT_NUMBER_1	2	
	ACCESS_1	Monitoring	
	ALPHA_NUM_1	Mnemonic	
	BLOCK_TAG_PARAM_2	AI BLOCK	
	INDEX_RELATIVE_2	18	
	iSUB_INDEX_2	0	
	MNEMONIC_2	DAMP	
	INC_DEC_2	0.01	
	DECIMAL_POINT_NUMBER_2	2	
	ACCESS_2	Action	
	ALPHA_NUM_2	Mnemonic 🗾 💌	
	▲	•	
		3	
	Cancel Edit Edit	Close Help	
			1

Figure 3.11 - Parameters for Local Adjustment Configuration

0	n Line: SMAR_DP_XMTR - Displa	y - DSP_BLK	
ŀ	< > < 🖓 🖓 🚮 🖉 📥 🖉	V 🖪 🔽 🖡	ENRI I+
	Parameter	Value	▲
	BLOCK_TAG_PARAM_3	TRD_BLK	
	INDEX_RELATIVE_3	17	
	SUB_INDEX_3	2	
	MNEMONIC_3	LOWER	
	INC_DEC_3	0.01	
	DECIMAL_POINT_NUMBER_3	2	
	ACCESS_3	Action	
	ALPHA_NUM_3	Mnemonic	
	BLOCK_TAG_PARAM_4	TRD_BLK	
		16	
	SUB_INDEX_4	2	
	MNEMONIC_4	UPPER	
		0.01 2	
	DECIMAL_POINT_NUMBER_4	∠ Action	
	ACCESS_4 ALPHA NUM 4	Mnemonic	
	MALPHA_NOM_4	Minemonic	
	Cancel Edit Edit	Close	Help

Figure 3.12 - Parameters for Local Adjustment Configuration

On Line: SMAR_DP_XMTR - Display - DSP_BLK				
< > < (1) < < < < < < < < < < < < < < < < < < <	27 🗔 📆 📑			
Parameter	Value			
BLOCK_TAG_PARAM_5	TRD_BLK			
INDEX_RELATIVE_5	0			
SUB_INDEX_5	1			
MNEMONIC_5	TAG			
INC_DEC_5	0.25			
	2			
ACCESS_5	Monitoring			
ALPHA_NUM_5				
BLOCK_TAG_PARAM_6	TRANSDUCER BLOCK - LD302			
	32			
	PRESS NORMAL			
	0.25			
-DECIMAL_POINT_NUMBER_6	2			
ACCESS 6	Monitoring			
ALPHA NUM 6	Mnemonic 🚽			
1				
Cancel Edit Edit	Close Help			

Figure 3.13 - Parameters for Local Adjustment Configuration

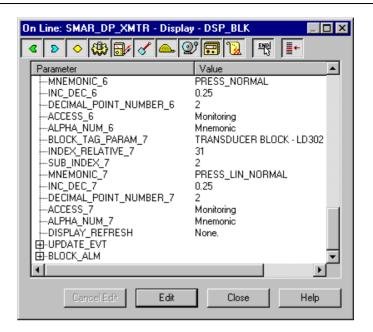


Figure 3.14 - Parameters for Local Adjustment Configuration

	On Line: SMAR_DP_XMTR - Display - DSP_BLK	
This parameter updates the local adjustment programming tree configured on each device.	Parameter Value MNEMONIC_6 PRESS_NORMAL MNEMONIC_6 0.25 DECIMAL_POINT_NUMBER_6 2 ACCESS_6 Monitoring ALPHA_NUM_6 Mnemonic BLOCK_TAG_PARAM_7 TRANSDUCER BLOCK - LD302 INDEX_RELATIVE_7 31 SUB_INDEX_7 2 MNEMONIC_7 PRESS_LIN_NORMAL INC_DEC_7 0.25 DECIMAL_POINT_NUMBER_7 2	 The option "update" should be selected in order to execute the upgrade of local adjustment programming tree. After its step all the parameters selected will be show on the LCD display.
	DECIMAL_POINT_NUMBER_7 2	
	ALPHA_NUM_7 Mnemonic DISPLAY_REFRESH None. DISPLAY_REFRESH None.	
	Horie. Update Display.	
	Cancel Edit End Edit Close Help	

Figure 3.15 - Parameters for Local Adjustment Configuration

Programming Using Local Adjustment

The local adjustment can not configure all the parameters as SYSCON can. It means the user can select the best options for this application. From the factory, it is configured with the options to set the Upper and Lower trim, for monitoring the transducer output and check the Tag. Usually, the transmitter is much better configured by SYSCON, but the local functionality of the LCD allows an easy and fast action on certain parameters, since it does not rely on communication and network wiring connections. Among the possibilities of the Local Adjustment, the following options can be emphasized: Mode block, Outputs monitoring, Tag visualization and Tuning Parameters setting.

The interaction between the user and the transmitter is also described in detail on the "General Installation, Operation and Maintenance Procedures Manual". Take a look at this manual in the chapter related to "Programming Using Local Adjustment".

The **TT302** has, underneath its identification plate, two holes marked with the letters S and Z beside them. These holes give access to two magnetic switches (Reed Switch), which can be activated by the magnetic tool (See Figure 3.16).

This magnetic tool enables adjustment of the most important parameters of the blocks.

The jumper W1 on top of the main circuit board must be in place and the positioner must be fitted with digital display for access to the local adjustment. Without the display, it is not possible to do the local adjustment.

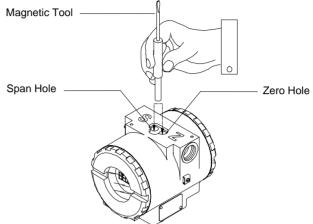


Figure 3.16 - Local Adjustment Holes

Table 3.4 shows the actions on the Z and S holes on the TT302 when Local Adjustment is enabled.

HOLE	ACTION	
Z	Initializes and rotates through the available functions.	
S	Selects the function shown in the display.	

Table 3.4 - Purpose of the holes on the Housing

J1 Jumper Connections

If J1 (see figure 3.18) is connected to ON, it is possible to simulate values and status through the SIMULATE parameter, from the Analog Input block.

W1 Jumper Connections

If W1 (see figure 3.18) is connected to ON, the local adjustment programming tree is enabled, and so the block parameters can be adjusted via local adjustment.

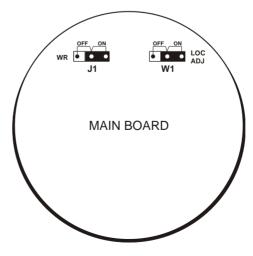
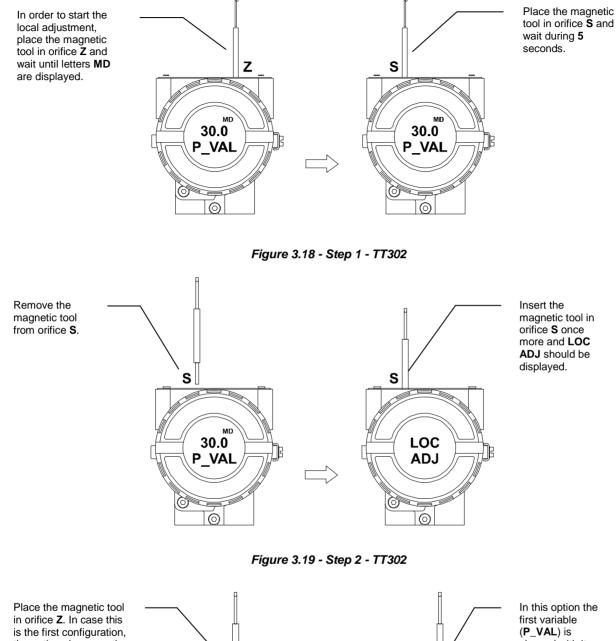
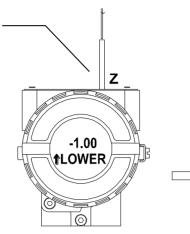



Figure 3.17 - J1 and W1 Jumpers

Local Programming Tree



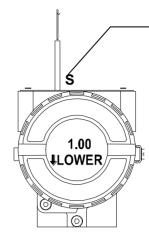
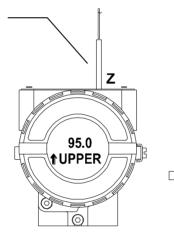
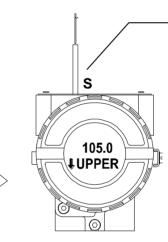

In orifice Z. In case this is the first configuration, the option shown on the display is the **TAG** with its corresponding mnemonic configured by the SYSCON. Otherwise, the option shown on the display will be the one configured in the prior operation. By keeping the tool inserted in this orifice, the local adjustment menu will rotate. Z TAG TRD O O

Figure 3.20 - Step 3 - TT302

In this option the first variable (**P_VAL**) is showed with its respective value (if you to want that it keep static, put the tool in **S** orifice and stay there.

In order to configure the lower value (lower), simply insert the magnetic tool in orifice S as soon as LOWER is shown on the display. An arrow pointing upward (\uparrow) increments the valve and an arrow pointing downward (\downarrow) decrements the value. In order to increment the value, keep the tool insert in S up to set the value desired.

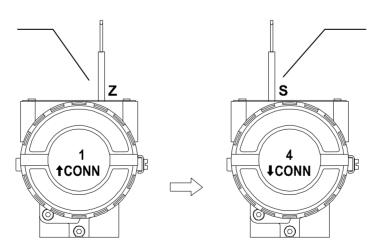




In order to decrement the lower value, insert the magnetic tool in orifice Z to shift the arrow to the downward position. After this, lift it from orifice Z and insert it in the orifice S, and wait to achieve the desired value.

Figure 3.21 - Step 4 - TT302

In order to range the upper value (upper), simply insert the magnetic tool in orifice **S** as soon as upper is shown on the display. An arrow pointing upward (\uparrow) increment the value and an arrow pointing downward (\downarrow) decrements the value. In order to increment the value, keep the tool insert in **S** up to set the value desired.



In order to decrement the upper value, insert the magnetic tool in orifice **Z** to shift the arrow to the downward position. After this, insert it in the orifice **S**, and wait to achieve the desired value.

Figure 3.22 - Step 5 - TT302

In order to configure the connection (**CONN**), simply insert the magnet tool in orifice **S** as soon as **CONN** is shown on the display. An arrow pointing upward (\uparrow) increment the value and an arrow pointing downward (\downarrow) decrement the value. The number over **CONN** mnemonic is the value corresponding of the table 3.2. See it to do the correct choice of the connection value.

In order to decrement the connection value, insert the magnetic tool in orifice **Z** to shift the arrow to the downward position. After this, insert it in the orifice **S**, and wait to achieve the desired value.

Figure 3.23 - Step 6 - TT302

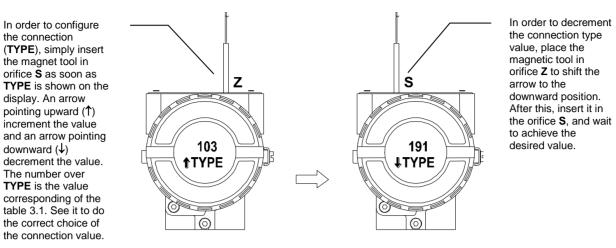


Figure 3.24 - Step 7 - TT302

MAINTENANCE PROCEDURES

Troubleshouting

SMAR TT302 transmitters are extensively tested and inspected before delivery to the end user. Nevertheless, during their design and development, consideration was given to the possibility of repairs being made by the end user, if necessary.

In general, it is recommended that end users do not try to repair printed circuit boards. Spare circuit boards may be ordered from **SMAR** whenever necessary.

SYMPTOM	PROBABLE SOURCE OF PROBLEM
NO COMMUNICATION	 Transmitter Connections Check wiring polarity and continuity. Check for shorts or ground loops. Check if the power supply connector is connected to main board. Check if the shield is not used as a conductor. It should be grounded at one end only. Power Supply Check power supply output. The voltage must be between 9 - 32 VDC at the TT302 terminals. Noise and ripple should be within the following limits:
NCORRECT READING	 Check the main board for defect by replacing it with a spare one. Transmitter Connections Check for intermittent short circuits, open circuits and grounding problems. Check if the sensor is correctly connected to the TT302 terminal block. Check if the sensor signal is reaching the TT302 terminal block by measuring it with a multimeter at the transmitter end. • Noise, Oscillation Adjust damping Check the terminal block for moisture. Check the terminal block for moisture. Check that the shielding of the wires between sensor/ transmitter and transmitter/ panel is grounded only in one end. • Sensor Check the sensor operation; it shall be within its characteristics. Check if process is within the range of the sensor and the TT302. • Electronic Circuit Failure Check the integrity of circuit replacing it with a spare one. • Transmitter Configuration Check if the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct. • Other is the sensor and wires configuration are correct.

Table 4.1 - Messages of Errors and Potential Cause

If the problem is not presented in the table above follow the Note below:

NOTE The Factory Init should be tried as a last option to recover the equipment control when the equipment presents some problem related to the function blocks or the communication. This operation must only be carried out by authorized technical personnel and with the process offline, since the equipment will be configured with standard and factory data.

This procedure resets all the configurations run on the equipment, after which a partial download should be performed. With exception to the equipment physical address and the gsd identifier number selector parameter. After doing this, all configurations must be remade according to their applications.

To run the factory Init, use two magnetic screwdrivers. Remove the screw on the equipment that fixes the identification tag on the carcass top to access the orifices bearing the letters "S" and "Z".

The operations to follow are:

1) Turn off the equipment; insert the magnetic tools in each orifice (S and Z). Leave them in the orifices;

2) Power the equipment;

3) As soon as Factory Init is shown on the display, take off the tools and wait for the "5" symbol on the right upper corner of the display to unlit, thus indicating the end of the operation.

This operation has factory configuration that eliminates possible problems with the functional blocks or the transmitter communication.

Caution: this operation must be carried out by an authorized technician, with the process offline, as the process will be configured with factory standard data.

Disassembly Procedure

Refer to Figure 4.2 - Exploded View. Make sure to disconnect the power supply before disassembling the transmitter.

Sensor

If the sensor is mounted on the transmitter, first disconnect the wires to prevent the wires from breaking. To access the terminal block, first loosen the cover locking screw on the side marked "Field Terminals", then unscrew the cover.

Electronic Circuits

The main board (5) and input board (7) are matched pairs and must be changed together and not mixed with others. To remove the circuit boards (5 and 7) and the display (4), first loosen the cover locking (8) on the side not marked "Field Terminals" then unscrew the cover (1).

Loosen the two screws (3) that anchor the display and the main circuit board. Gently pull out the display, and then the main board (5). To remove the input board (7), first unscrew the two screws (6) that anchors it to the housing (9), gently pull out the board.

WARNING

The boards have CMOS components, which may be damaged by electrostatic discharges. Observe correct procedures for handling CMOS components. It is also recommended to store the circuit boards in electrostatic-proof cases.

Reassembly Procedure

- Put input board (7) into housing (9).
- Anchor input board with its screws (6).
- Put main board (5) into the housing, ensuring all interconnecting pins are connected.
- Put display (4) into the housing, observing the four mounting positions (See Figure 4.1) "_" should point in the direction desired as UP.
- Anchors main board and display with their screws (3).
- Fit the cover (1) and lock it using the locking screw (8).

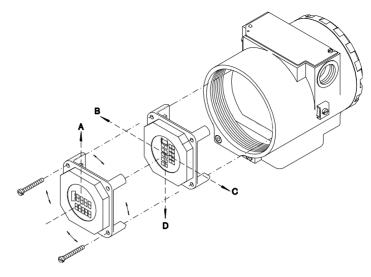
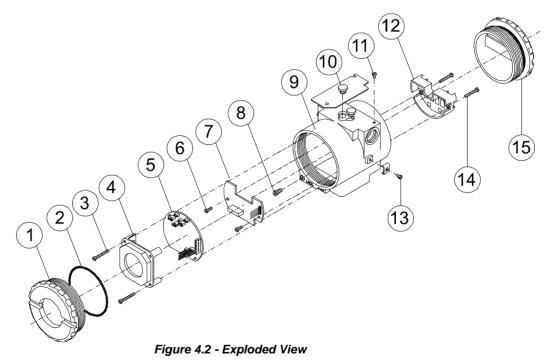


Figure 4.1 - Four Possible Positions of the Display


Interchangeability

The Main and Input boards must be kept together because of the calibration data that is stored in the main board EEPROM. In the case of one board being faulty, both must be replaced.

Returning Materials

Should it become necessary to return the transmitter to SMAR, simply contact your local agent or SMAR office, informing the defective instrument's serial number, and return it to our factory.

To expedite analysis and solution of the problem, the defective item should be returned with a description of the failure observed, with as many details as possible. For faster problem evaluation, the material sent must describe the installation data, type of measure adopted and process conditions.

NOTE For aluminum housing there is an insert in the position 13. This insert is used to improve the grounding.

ACCESSORIES									
ORDERING CODE	DESCRIPTION								
SD1	Magnetic Tool for Local Adjustment								
SYSCON	System Configurator								
PS302	Power Supply								
BT302	Terminator								
DFI302	Fieldbus Universal Bridge								

Table 4.2 - Accessories of SYSTEM302

SPARE PARTS LIST											
DESCRIPTION OF PARTS	POSITION	CODE	CATEGORY (NOTA 1)								
HOUSING, Aluminum (NOTE	2)		, <i>í</i>								
. 1/2 - 14 NPT	9	314-0130									
. M20 x 1.5	9	314-0131									
. PG 13.5 DIN	9	314-0132									
HOUSING, 316 SS (NOTE 2)										
. 1/2 - 14 NPT	9	314-0133									
. M20 x 1.5	9	314-0134									
. PG 13.5 DIN	9	314-0135									
COVER (INCLUDES O'RING	i)										
. Aluminum	1 and 15	204-0102									
. 316 SS	1 and 15	204-0105									
COVER WITH WINDOW FOR INDICATION (IN	ICLUDES O'RIN	G)									
. Aluminum	1	204-0103									
. 316 SS	1	204-0106									
COVER LOCKING SCREW	8	204-0120									
EXTERNAL GROUND SCREW	13	204-0124									
IDENTIFICATION PLATE FIXING SCREW	11	204-0116									
DIGITAL INDICATOR	4	214-0108									
TERMINAL INSULATOR	12	314-0123									
MAIN INPUT CIRCUIT BOARD ASSEMBLY	5 and 7	400-0234	Α								
O'RINGS (NOTE 3)											
. Cover, Buna-N	2	204-0122	В								
TERMINAL HOLDING SCRE	N .										
. Housing in Aluminum	14	304-0119									
. Housing in 316 Stainless Steel	14	204-0119									
MAIN BOARD SCREW HOUSING IN A											
. Units with indicator	3	304-0118									
. Units without indicator	3	304-0117									
MAIN BOARD SCREW HOUSING IN 316 STAINLESS STEEL											
. Units with indicator	3	204-0118									
. Units without indicator	3	204-0117									
INPUT BOARD SCREW											
. Housing in Aluminum	6	314-0125									

SPARE PARTS LIST										
DESCRIPTION OF PARTS	POSITION	CODE	CATEGORY (NOTA 1)							
. Housing in 316 Stainless Steel	6	214-0125								
MOUNTING BRACKET FOR 2" PIPE MOU	NTING (NOTE 4)									
. Carbon Steel	-	214-0801								
. Stainless Steel 316	-	214-0802								
. Carbon Steel bolts, nuts, washers and U-clamp in Stainless Steel	-	214-0803								
LOCAL ADJUSTMENT PROTECTION CAP	10	204-0114								

Table 4.3 - Spare Part List

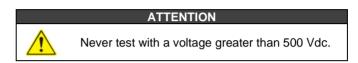
NOTE

1. For category A, it is recommended to keep, in stock, 25 parts installed for each set, and for category B, 50.

2. It includes Terminal holder insulator, bolts (cover lock, grounding, and terminal holder insulator) and identification plate without certification.

3. 0-Rings are packaged in packs of 12 units.

4. Including U-clamp, nuts, bolts, and washers.


Isolation Test on Equipment Housings

1. Power off the equipment in the field, remove its back cover and disconnect all field cables from the transmitter terminal block, isolating them safely.

2. It is not necessary to remove the main board and display.

3. Jumper (connect) the power terminals (positive and negative) with the cable coming from the Megohmmeter (megger). In the case of a temperature transmitter, also jumper all the connectors with the same cable. In these instruments, in addition to the power terminals, there are sensor terminals. All these terminals must be connected to apply voltage in relation to the housing.

4. Configure the megohmmeter for 500 Vdc scale and check the isolation between the housing and the cable that short-circuits all the terminals.

5. The value obtained must be greater than or equal to $2G\Omega$ and the voltage application time must be at least 1 second and at most 5 seconds.

6. If the value obtained by the megohimmeter is below $2G\Omega$, the possibility of moisture entering the electrical connection compartment must be analysed.

7. It is possible to loosen the two screws that secure the terminal block to the housing and carry out a superficial cleaning and dry the surface well. Afterwards, the isolation can be tested again.

8. If the isolation test still shows that the isolation has been compromised, the housing must be replaced and sent to Nova Smar S.A. for analysis and retrieval.

IMPORTANT

- a) For equipment certified Exd and Exi (Explosion Proof and Intrinsically Safe) the standards advise not to carry out repairs in the field of the housing electronic components, only at Nova Smar S.A.
- b) In normal use, the housing components must not cause failures that affect its isolation. For this reason, it is important to verify whether there are traces of water entering the housing and, if so, an assessment of the electrical installations and the sealing rings of the covers must be carried out. Nova Smar S.A. has a team ready to support the assessment of facilities, if necessary.

TECHNICAL CHARACTERISTIC

	Functional Specifications											
Inputs	See table 5.1, 5.2, 5.3 and 5.4											
Output and Communication Protocol	Digital only. Complies with IEC 61158-2: 2000 (H1): 31.25 kbit/s voltage mode, bus powered.											
Power Supply / Current Consumption	Bus powered: 9 - 32 Vdc. Quiescent current consumption: 12 mA.											
Indicator	4 1/2 -digit numerical and 5-character alphanumerical LCD indicator (optional).											
Hazardous Area Certifications	See Appendix A											
Zero and Span Adjustments	No interactive, via local adjustment and digital communication.											
Failure Alarm (Diagnostics)	For sensor or circuit failures, status is sent to link outputs. Detailed diagnostics are available in the contained parameters.											
Temperature Limits	Operation: -40 °C to 85 °C (-40 to 185 °F) Storage: -40 °C to 120 °C (-40 to 248 °F) Display: -20 °C to 80 °C (-4 to 176 °F) -40 °C to 85 °C (-40 to 185 °F) (without damage)											
Turn-on Time	Performs within specifications in less than 10 seconds after power is applied to the transmitter.											
Configuration	Basic configuration may be done using the local adjustment magnetic tool if device is fitted with display. Complete configuration is possible using configuration tools such as Syscon302 (System Configuration Tool), AMS [™] , FieldCare [™] and HHT375.											
Humidity Limits	0 to 100% RH											

	Performance Specificat	ions							
Accuracy	See table 5.1, 5.2, 5.3 and 5.4								
Temperature Effect	For a 10 °C variation: mV (-6 to 22 mV), TC (NBS: B, R, S,T): \pm 0.03% of the input milivoltage or 0.002 mV whichever is greater mV (-10 to 100 mV), TC (NBS: E, J, K, N; DIN: L, U): \pm 0.03% of the input milivoltage or 0.01 m ² whichever is greater; mV (-50 to 500 mV): \pm 0.03% of the input milivoltage or 0.05 mV whichever is greater; Ohms (0 to 100Ω), RTD (GE: Cu10): \pm 0.03% of the input resistence or 0.01Ω whichever is greater; Ohms (0 to 400Ω), RTD (DIN: Ni120; IEC: Pt50, Pt100; JIS: Pt50, Pt100): \pm 0.03% of the input resistence or 0.04Ω whichever is greater; Ohms (0 to 2000Ω), RTD (IEC: Pt500): \pm 0.03% of the input resistence or 0.2Ω whichever is greater; TC: cold-junction compensation rejection 60:1 (Reference: 25.0 \pm 0.3 °C).								
Power Supply Effect	± 0.005% of calibrated span per volt								
Electrical Connection	1/2 - 14 NPT M20 X 1.5 PG 13.5 DIN 1/2 - 14 NPT X 3/4 NPT (AI 316) - with adapter 1/2 - 14 NPT X 3/4 BSP (AI 316) - with adapter 1/2 - 14 NPT X 1/2 BSP (AI 316) - with adapter	Note: Explosion proof approvals do not apply to adapter, only to transmitter.							
Mounting	Can be attached directly to the sensor. With an option wall or panel.	nal bracket can be installed on a 2" pipe or fixed on a							

	Physical Specifications											
Approximate Weights	Without display and mounting bracket: 0.80 kg Add for digital display: 0.13 kg Add for mounting bracket: 0.60 kg											
Control Functions Characteristics (Optional)	RES, TRD, DSP, DIAG, AI, PID, EPID, ARTH, INTG, ISEL, CHAR, SPLT, AALM, SPG, TIME, LLAG, OSLD and CT											

	2, 3 or 4 wires												
SENSOR	ТҮРЕ	RANGE °C	RANGE °F	MINIMUM SPAN °C	°C DIGITAL ACCURACY*								
	Cu10 GE	-20 to 250	-4 to 482	50	± 1.0								
	Ni120 DIN	-50 to 270	-58 to 518	5	± 0.1								
	Pt50 IEC	-200 to 850	-328 to 1562	10	± 0.25								
RTD	Pt100 IEC	-200 to 850	-328 to 1562	10	± 0.2								
KID	Pt500 IEC	-200 to 450	-328 to 842	10	± 0.2								
	Pt1000 IEC	-200 to 300	-328 to 572	10	± 0.2								
	Pt50 JIS	-200 to 600	-328 to 1112	10	± 0.25								
	Pt100 JIS	-200 to 600	-328 to 1112	10	± 0.25								
	B NBS	100 to 1800	212 to 3272	50	± 0.5**								
	E NBS	-100 to 1000	-148 to 1832	20	± 0.2								
	J NBS	-150 to 750	-238 to 1382	30	± 0.3								
	K NBS	-200 to 1350	-328 to 2462	60	± 0.6								
THERMOCOUPLE	N NBS	-100 to 1300	-148 to 2372	50	± 0.5								
THERMOCOUPLE	R NBS	0 to 1750	32 to 3182	40	± 0.4								
	S NBS	0 to 1750	32 to 3182	40	± 0.4								
	T NBS	-200 to 400	-328 to 752	15	± 0.15								
	L DIN	-200 to 900	-328 to 1652	35	± 0.35								
	U DIN	-200 to 600	-328 to 1112	50	± 0.5								

Table 5.1 - 2, 3 or 4 wires Sensor Characteristics

* Accuracy of value read on display and accessed by communication. The 4-20 mA accuracy is the digital accuracy ±0.03% ** Not applicable for the first 20% of the range (up to 440 °C).

			DIFFERENTIAL										
SENSOR	ТҮРЕ	RANGE °C	RANGE °F	MINIMUM SPAN °C	°C DIGITAL ACCURACY*								
	Cu10 GE	-270 ^{to} 270	-486 ^{to} 486	50	± 2.0								
	Ni120 DIN	-320 ^{to} 320	-576 ^{to} 576	5	± 0.5								
	Pt50 IEC	-1050 ^{to} 1050	-1890 ^{to} 1890	10	± 1.0								
RTD	Pt100 IEC	-1050 ^{to} 1050	-1890 ^{to} 1890	10	± 1.0								
RID	Pt500 IEC	NA	NA	NA	NA								
	Pt1000 IEC	NA	NA	NA	NA								
	Pt50 JIS	-800 ^{to} 800	-1440 ^{to} 1440	10	± 1.0								
	Pt100 JIS	-800 ^{to} 800	-1440 ^{to} 1440	10	± 1.5								
	B NBS	-1700 ^{to} 1700	-3060 ^{to} 3060	60	± 1.0**								
	E NBS	-1100 ^{to} 1100	-1980 ^{to} 1980	20	± 1.0								
	J NBS	-900 ^{to} 900	-1620 ^{to} 1620	30	± 0.6								
	K NBS	-1550 ^{to} 1550	-2790 ^{to} 2790	60	± 1.2								
THERMOCOUPLE	N NBS	-1400 ^{to} 1400	-2520 ^{to} 2520	50	± 1.0								
THERMOCOUPLE	R NBS	-1750 ^{to} 1750	-3150 ^{to} 3150	40	± 2.0								
	S NBS	-1750 ^{to} 1750	-3150 ^{to} 3150	40	± 2.0								
	T NBS	-600 ^{to} 600	-1080 ^{to} 1080	15	± 0.8								
	L DIN	-1100 ^{to} 1100	-1980 ^{to} 1980	35	± 0.7								
	U DIN	-800 ^{to} 800	-1440 ^{to} 1440	50	± 2.5								

Table 5.2 - Differential Sensor Characteristics

 * Accuracy of value read on display and accessed by communication. ** Not applicable for the first 20% of the range (up to 440 $^{\circ}\text{C}$).

SENSOR	RANGE mV	*DIGITAL ACCURACY %					
	-6 to 22	$\pm0.02\%$ or $\pm2\mu V$					
mV	-10 to 100	$\pm0.02\%$ or $\pm10\mu V$					
	-50 to 500	$\pm0.02\%$ or $\pm50\mu V$					
mV DIF.	-28 to 28	$\pm0.1\%$ or $\pm10\mu V$					
mv Dir.	-110 to 110	$\pm0.1\%$ or $\pm50\mu V$					

Table 5.3 - mV Sensor Characteristics

 * Accuracy of value read on display and accessed by communication. ** Not applicable for the first 20% of the range (up to 440 $^{\circ}\text{C}$).

NA Not applicable.

SENSOR	RANGE Ohm	*DIGITAL ACCURACY %					
	0 to 100	±0.02% or ±0.01 Ohm					
Ohm	0 to 400	± 0.02% or ± 0.04 Ohm					
	0 to 2000	± 0.02% or ± 0.20 Ohm					
Ohm DIF.	-100 to 100	± 0.08% or ± 0.04 Ohm					
Unin DIF.	-400 to 400	± 0.1% or ± 0.2 Ohm					

Table 5.4 - Ohm Sensor Characteristics

Ordering Code

MODEL	TEMF	ERATURE TRANSMITTER																	
	COD.	Local	Indicate	or															
	0	Witho	ut Indica	tor							1	With Digi	ital Indi	icator					
1		COD.	Moun	ting Br	acket														
		0 1		ut Brack n Steel	ket Bracket			6 SST E arbon St		ket with 3	16 SST	Fasteners	5	Α	F	lat, 304 SST bracket and 316 SST a	accesso	ories	
-	-	Ì	COD.	Elect	rical Co	onnectic	ons												
		0 1/2 - 14 NPT (3) 3 1/2 - 14 NPT x 1/2 BSP (316 SST) - With adapter (2) Z According to user 1 1/2 - 14 NPT x 3/4 NPT (316 SST) - With adapter (4) A M20 x 1.5 (3) M20 x 1.5 (3) Z According to user 2 1/2 - 14 NPT x 3/4 BSP (316 SST) - With adapter (2) B PG 13.5 DIN (2) Z According to user													ording to user's notes				
	ł	COD. Housing Material (6) (7)																	
		COD. Housing Material (6) (7) H0 Aluminum (IP/TYPE) H1 316 SST (IP/TYPE) H2 Aluminum for use in saline atmosphere (IP/TYPE) (8)																	
i	i	-		-	COD.	Ident	ificatio	n Plate											
 	 		i		1 4		P, IS, NI EX-I, EX		15 16	INMETRO Without C		, EX-D) Ga ation	as			I7 ATEX (EX-I) Mining IL IECEX (EX-D) Gas		10	INMETRO (Dust)
	ļ	i	ł	÷	1	COD.	Tag I	Plate (5)											
	 			į		J0 J1	With Blank		n specif	fied (Defau	ılt)			J	J2	According to user's notes			
	ļ	i	ł	÷	1		COD.	Sens	or Conr	nection									
							L2 L3 L4	2-wire 3-wire 4-wire	e		LF LD LB	Differenti Double 2 Backup							
i i	i	1		ł	i	ł		COD.	Painti	ing		i i i							
		-						P0 P3 P4	Black	Munsell N Polyester Epoxy	6,5 Pol	lyester (De	fault)	P5 P8 P9	Wit	llow Polyester hout Painting fety Blue Epoxy – Electrostatic Paint	tina	PC	Safety Blue Polyester - Electrostatic Painting
	I I		i	ł	ł		ł		COD.		r Type						- g		
									T1 T2 T3 T4 T5 T6 T7 T8 T9	Cu10 - C Ni120 - PT50 - I PT500 - PT500 - PT50 - C PT100 - 2K OHM 400 OH	DIN IEC IEC IEC JIS JIS			TB TC TD TE TF TG TH	Therr Therr Therr Therr Therr Therr Therr	mocouple type B - NBS mocouple type E - NBS mocouple type J - NBS mocouple type N - NBS mocouple type R - NBS mocouple type S - NBS mocouple type T - NBS mocouple type T - NBS		TP TN TQ TR TS	Thermocouple type U - DIN 100 OHM 22 mV 100 mV 500 mV
1								ļ	İ	_									
TT302	1	2	0	H1	11	JO	L2	P8	T1										
NOT	_	1		0 -11-11		line it.	4- 5												
• •			to 4 1/2 or use i	•				haracte	rs.										

- (3) Certification Ex-d for FM / ATEX / IECEx / INMETRO.
- (4) Certification Ex-d for INMETRO.
- (5) Rectangular plate in 316 SST
 (6) IPX8 tested in 10 meters of water column for 24 hours.
 (7) Ingress Protection:

	Product	CEPEL	NEMKO / EXAM	FM	CSA	NEPSI				
	TT300	IP66/68W	IP66/68W	Type 4X/6(6P)	Type 4X	IP67				

(8) IPW/TYPE testes for 200 hours according to NBR 8094 / ASTM B 117 standard.

CERTIFICATIONS INFORMATION

European Directive Information

Consult www.Smar.com for the EC declarations of conformity and certificates.

Authorized representative/importer located within the Community:

Smar Europe BV De Oude Wereld 116 2408 TM Alphen aan den Rijn Netherlands

ATEX Directive 2014/34//EU - "Equipment for explosive atmospheres" (applicable from 20 April 2016)

The EC-Type Examination Certificate is released by DNV Product Assurance AS (NB 2460) and DEKRA Testing and Certification GmbH (NB 0158).

Designated certification body that monitors manufacturing and released QAN (Quality Assurance Notification) is Nemko AS (NB 0470) and UL International Demko AS (NB 0539).

LVD Directive 2014/35/EU – "Low Voltage" (applicable from 20 April 2016)

According the LVD directive Annex II, electrical equipment for use in an explosive atmosphere is outside the scope of this directive.

According to IEC standard: IEC 61010-1 - Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements.

ROHS Directive 2011/65/EU - "Restriction of the use of certain hazardous substances in electrical and electronic equipment"

For the evaluation of the products the following standards were consulted: EN IEC 63000.

EMC Directive 2014/30/EU - "Electromagnetic Compatibility" (applicable from 20 April 2016)

For products evaluation the standard IEC 61326-1 were consulted and to comply with the EMC directive the installation must follow these special conditions:

Use shielded, twisted-pair cable for powering the instrument and signal wiring. Keep the shield insulated at the instrument side, connecting the other one to the ground.

Hazardous locations general information

Ex Standards:

IEC 60079-0 General Requirements IEC 60079-1 Flameproof Enclosures "d" IEC 60079-7 Increased Safe "e" IEC 60079-11 Intrinsic Safety "i" IEC 60079-18 Encapsulation "m" IEC 60079-26 Equipment with Separation Elements or combined Levels of Protection IEC 60079-31 Equipment dust ignition protection by enclosure "t" IEC 60529 Classification of degrees of protection provided by enclosures (IP Code) IEC 60079-10 Classification of Hazardous Areas IEC 60079-14 Electrical installation design, selection and erection IEC 60079-17 Electrical Installations, Inspections and Maintenance IEC 60079-19 Equipment repair, overhaul and reclamation ISO/IEC 80079-34 Application of quality systems for equipment manufacture

Warning:

Explosions could result in death or serious injury, besides financial damage.

Installation of this instrument in hazardous areas must be in accordance with the local standards and type of protection. Before proceedings with installation make sure that the certificate parameters are in accordance with the classified hazardous area.

Maintenance and Repair

The instrument modification or replaced parts supplied by any other supplier than authorized representative of Smar is prohibited and will void the Certification.

Marking Label

The instrument is marked with type of protection options. The certification is valid only when the type of protection is indicated by the user. Once a particular type of protection is installed, do not reinstall it using any other type of protection.

Intrinsic Safety / Non Incendive application

Only connect the equipment with the "Intrinsic safety" protection type to a circuit intrinsically safe. If the equipment has already been used in circuits not intrinsically safe or if the electrical specifications have not been respected, the safety of the equipment is no longer guaranteed for "Intrinsic Safety" installations.

In hazardous areas with intrinsic safety or non-incendive requirements, the circuit entity parameters and applicable installation procedures must be observed.

The instrument must be connected to a proper intrinsic safety barrier. Check the intrinsically safe parameters involving the barrier and equipment including the cable and connections. Associated apparatus ground bus shall be insulated from panels and mounting enclosures. Shield is optional, when using shielded cable, be sure to insulate the end not grounded.

Cable capacitance and inductance plus Ci and Li must be smaller than Co and Lo of the Associated Apparatus. It is recommended do not remove the housing covers when powered on.

Explosionproof / Flameproof application

Only use Explosionproof/Flameproof certified Plugs, Adapters and Cable glands.

The electrical connections entries must be connected using a conduit with sealed unit or closed using metal cable gland or metal blanking plug with at least IP66.

Do not remove the housing covers when powered on.

Enclosure

The electronic housing and sensor threads installed in hazardous areas must have a minimum of 6 fully engaged threads. The covers must be tightening with at least 8 turns, to avoid the penetration of humidity or corrosive gases, and until it touches the housing. Then, tighten more 1/3 turn (120°) to guarantee the sealing.

Lock the housing and covers using the locking screw.

The enclosure contains aluminum and is considered to present a potential risk of ignition by impact or friction. Care must be taken during installation and use to prevent impact or friction.

Degree of Protection of enclosure (IP)

IPx8: Second numeral meaning continuous immersion in water under special condition defined as 10m for a period of 24 hours (Ref: IEC60529).

IPW/ TypeX: Supplementary letter W or X meaning special condition defined as saline environment tested in saturated solution of NaCl 5% w/w at 35°C for a period of 200 hours (Ref: NEMA 250/ IEC60529).

For enclosure with IP/IPW/TypeX applications, all NPT threads must apply a proper water-proof sealant (a non-hardening silicone group sealant is recommended).

Hazardous Locations Approvals

FM Approvals

FM 4Y3A4.AX XP Class I Division 1, Groups A, B, C, D DIP Class II, Class III Division 1, Groups E, F, G IS Class I, II, III Division 1, Groups A, B, C, D, E, F G NI Class I, Division 2, Groups A, B, C, D T4; Tamb = +60°C Max; Type 4, 4X, 6, 6P

Entity Parameters Fieldbus Power Supply Input (report 3015629): Vmax = 24 Vdc, Imax = 250 mA, Pi = 1.2 W, Ci = 5 nF, Li = 12 uH Vmax = 16 Vdc, Imax = 250 mA, Pi = 2 W, Ci = 5 nF, Li = 12 uH

Drawings 102A-0079, 102A-1231, 102A-1354

ATEX DNV

Explosion Proof (PRESAFE 20 75160X) II 2 G Ex db IIC T6 Gb Ambient Temperature: -20 °C to +60 °C Options: IP66W/68W or IP66/68

Special conditions for safe use: Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 1 and 2 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: EN IEC 60079-0:2018 General Requirements EN 60079-1:2014 Flameproof Enclosures "d"

Drawings 102A-1529, 102A-1473

IECEx DNV

Explosion Proof (IECEx DNV 21.0090X) Ex db IIC T6 Gb Ta -20 °C to +60 °C Options: IP66/68W or IP66/68

Special Conditions for Safe Use Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 1 and 2 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: IEC 60079-0:2017 General Requirements IEC 60079-1:2014-06 Equipment protection by flameproof enclosures "d"

Drawings 102A-2189, 102A-2190

ATEX DEKRA

Intrinsic Safety (DMT 00ATEX E 061) II 2G Ex ia IIC T4/T5/T6 Gb I M2 Ex ia I Mb

FISCO Field Device Supply circuit for the connection to an intrinsically safe FISCO fieldbus-circuit: Ui = 24 Vdc, Ii = 380 mA, Pi = 5.32 W, Ci ≤ 5 nF, Li = Neg Parameters of the supply circuit comply with FISCO model according to Annex G EN60079-11:2012, replacing EN 60079-27:2008.

2-wire / 3-wire / 4-wire measuring circuit in type of protection Ex ia I / IIC for the connection to intrinsically safe thermocouples or resistance temperature indicators: Uo = 6.5 Vdc, Io = 20 mA, Po = 30 mW, Ci ≤ 300 nF, Li = Neg, Co ≤ 700 nF, Li ≤ 20 mH

The 2-wire / 3-wire / 4-wire measuring circuit provides safe galvanic separation from the fieldbus circuit. Ambient Temperature:

 $-40^{\circ}C \le Ta \le +60^{\circ}C (T4)$ $-40^{\circ}C \le Ta \le +50^{\circ}C (T5)$ $-40^{\circ}C \le Ta \le +40^{\circ}C (T6)$

The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2012 + A11:2013 General Requirements EN 60079-11:2012 Intrinsic Safety "i"

Drawings 102A-1473, 102A-1529, 102A-1475, 102A-1531

INMETRO NCC

Segurança Intrínseca (NCC 24.0167X) Equipamento de campo FISCO Ex ia IIC T* Ga Ex ia IIIC T* Da Ui = $30 \vee$ Ii = 380 mA Pi = $5,32 \vee$ Ci = 5,0 nF Li = desp Tamb: - $20 \degree$ C a + $50 \degree$ C para T5 ou T₂₀₀100 \degree C Tamb: - $20 \degree$ C a + $65 \degree$ C para T4 ou T₂₀₀135 \degree C IP66/68 ou IP66/68W

Prova de Explosão (NCC 24.0170) Ex db IIC T6 Gb Ex tb IIIC T85 °C Db Tamb: -20 °C a +40 °C IP66/68 ou IP66/68W

Observações:

O número do certificado é finalizado pela letra "X": Para indicar que para a versão do Transmissor de Temperatura, modelos TT302 e TT303 equipado com invólucro fabricado em liga de alumínio, somente pode ser instalado em localização que exigem o "EPL Ga", se durante a instalação for excluído o risco de ocorrer impacto ou fricção entre o invólucro e peças de ferro/aço.

O produto adicionalmente marcado com a letra suplementar "W" indica que o equipamento foi ensaiado em uma solução saturada a 5% de NaCl p/p, à 35 °C, pelo tempo de 200 h e foi aprovado para uso em atmosferas salinas, condicionado à utilização de acessórios de instalação no mesmo material do equipamento e de bujões de aço inoxidável ASTM-A240, para fechamento das entradas roscadas não utilizadas.

Os planos de pintura P1 são permitidos apenas para equipamento fornecido com plaqueta de identificação com marcação para grupo de gás IIB.

O grau de proteção IP68 só é garantido se nas entradas roscadas de ½" NPT for utilizado vedante não endurecível à base de silicone.

O segundo numeral oito indica que o equipamento foi ensaiado para uma condição de submersão de dez metros por vinte e quatro horas. O acessório deve ser instalado em equipamentos com grau de proteção equivalente.

É responsabilidade do fabricante assegurar que todos os transformadores da placa analógica tenham sido submetidos com sucesso aos ensaios de rotina de 1500 V durante um minuto.

Este certificado é válido apenas para os produtos dos modelos avaliados. Qualquer modificação nos projetos, bem como a utilização de componentes ou materiais diferentes daqueles definidos pela documentação descritiva dos produtos, sem a prévia autorização, invalidará este certificado.

As atividades de instalação, inspeção, manutenção, reparo, revisão e recuperação dos equipamentos são de responsabilidade dos usuários e devem ser executadas de acordo com os requisitos das normas técnicas vigentes e com as recomendações do fabricante.

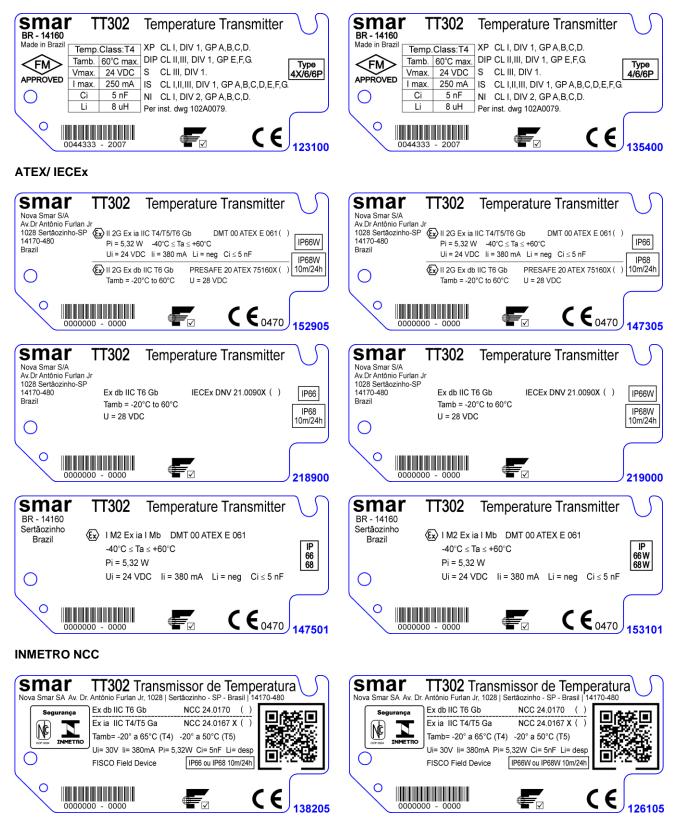
Normas Aplicáveis:

ABNT NBR IEC 60079-0:2020 Atmosferas explosivas - Parte 0: Equipamentos - Requisitos gerais

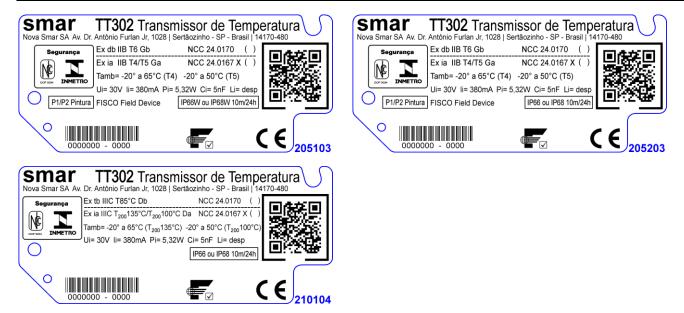
ABNT NBR IEC 60079-1:2016 Atmosferas explosivas - Parte 1: Proteção de equipamento por invólucro à prova de explosão "d"

ABNT NBR IEC 60079-11:2013 Atmosferas explosivas - Parte 11: Proteção de equipamento por segurança intrínseca "i"

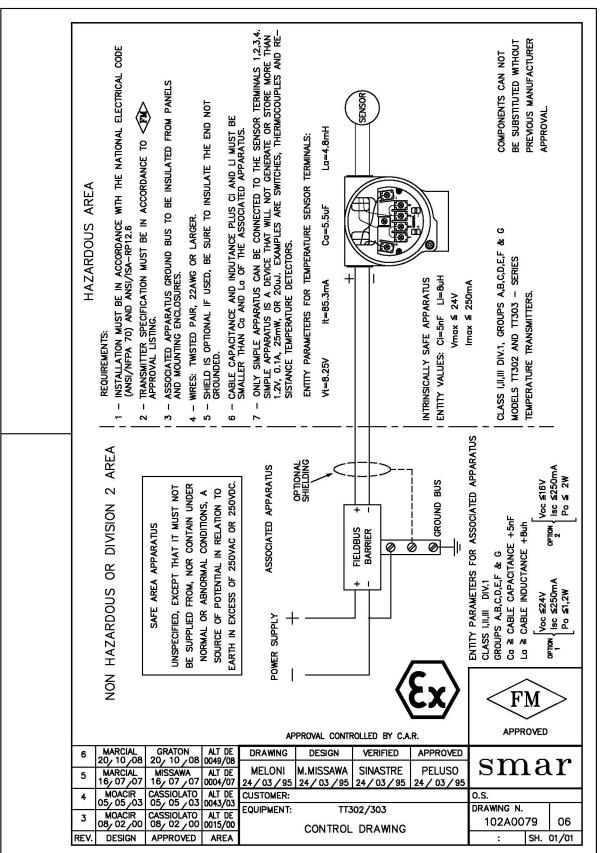
ABNT NBR IEC 60079-26:2022 Atmosferas explosivas - Parte 26: Equipamentos com elementos de separação ou níveis de proteção combinados


ABNT NBR IEC 60079-31:2022 Atmosferas explosivas - Parte 31: Proteção de equipamentos contra ignição de poeira por invólucros "t"

ABNT NBR IEC 60529:2017 Graus de proteção providos por invólucros (Código IP)


Desenhos 102A1382, 102A1261, 102A2052, 102A2051, 102A2101

Identification Plate


FM Approvals

TT302 - Certification Information

FM Approvals

smar	-SERVICE REQUE	EST FORM	Proposal	Proposal No.:						
Company:		Unit:		Receipt of	Warranty					
				Remittance:	Yes() Purchase Order:	No ()				
COMMER	CIAL CON	ТАСТ	TECHNICAL CONTACT							
Full name:			Full name:							
Position:			Position:							
Phone:	Extension:		Phone: Extension:							
Fax: Email:			Email:	Fax:						
	FO	UIPMENT DATA / TE		ISOR						
Model:		Serial Number:	Sensor Type and Con							
TT301 () TT302 () TT303 () TT400SIS () TT411 () TT421 ()			Measurement type: () Double Sensor () Average between Sensors () Differential () Backup () Single							
	INFOR	MATION AND DESCI	RIPTION OF THE	AILURE						
Environment Temperatu		Work Temper			Calibration Range					
Min: Max	· · ·	Min :	Max:	Min:	Max:					
Operation Time:	-		Failure Data:							
(Please, inform more details about the application, installation, etc.).										
(F		ILURE DESCRIPTION the behavior of the fail, if it is	repetitive, how it exactly		n.)					
For warranty or non-warranty repair, please contact your representative. Further information about address and contacts can be found on https://www.smar.com.br/en/contact-us										