- TP303

SMAI

DEZ / 24 TP303 VERSÃO 3

MANUAL DE INSTRUÇÕES, OPERAÇÃO E MANUTENÇÃO

TRANSMISSOR DE POSIÇÃO PROFIBUS PA

Especificações e informações estão sujeitas a modificações sem prévia consulta. Informações atualizadas dos endereços estão disponíveis em nosso site.

web: www.smar.com/brasil/faleconosco

INTRODUÇÃO

O **TP303** pertence à primeira geração de equipamentos Profibus-PA. Ele é um transmissor para medidas de posição. Com ele pode-se medir deslocamento ou movimento do tipo linear ou rotativo. O **TP303** lê a posição e disponibiliza-a para o sistema Fieldbus. A tecnologia digital e a comunicação usada no **TP303** permitem um interfaceamento fácil entre o campo e a sala de controle, e várias características interessantes, que reduzem consideravelmente os custos de instalação, operação e manutenção.

O **TP303** é versátil, confiável e tem uma alta precisão. Ele pode ser usado para medir a posição da haste da válvula de controle ou qualquer outra aplicação que necessite de um sensor de posição, tal como: persianas, dampers, trituradores, etc.

O **TP303** usa um acoplador magnético sem contato físico para medir a posição. Ele sente menos vibração que outras soluções resultando, assim, numa maior durabilidade operacional. A faixa morta devido a imprecisão mecânica é eliminada. O **TP303** pode ser montado em qualquer válvula linear ou rotativa, atuador ou uma variedade de outros equipamentos pelo uso como VDI/VDE e IEC/NAMUR etc.

O **TP303** é muito versátil; o usuário pode padronizar um indicador de posição para todos os tipos diferentes de válvula de controle e outras máquinas, mantendo um mínimo de treinamento e sobressalentes.

O TP303 faz parte da completa série 303 de equipamentos Profibus-PA da Smar.

Algumas vantagens das comunicações digitais bidirecionais dos protocolos atuais dos transmissores inteligentes são: alta precisão, acesso multivariável, diagnóstico, configuração remota e "multidrop" de vários equipamentos num único par de fios.

O sistema controla a amostragem de variáveis, a execução dos algoritmos, a comunicação e, também, otimiza o uso da rede sem perda de tempo. Assim, consegue-se um alto desempenho em malha fechada.

Usando a tecnologia Profibus com sua capacidade de interconectar vários equipamentos, grandes malhas de controle podem ser construídas. O conceito de bloco funcional foi introduzido para que o equipamento seja amigável.

O desenvolvimento dos dispositivos da série 303 levou em conta a necessidade de implementação do Profibus-PA tanto em pequenos como em grandes sistemas. Eles também podem ser configurados localmente usando uma chave magnética, eliminando, assim, a necessidade de um configurador em muitas aplicações básicas.

O **TP303**, como o resto da família 303, tem alguns blocos de função embutidos como por exemplo: entrada analógica e bloco totalizador.

O TP303 está disponível como um produto, mas também pode substituir a placa de circuito do TP301.

Ele usa a mesma placa do sensor. Refira a seção manutenção deste manual para instruções de atualização. O **TP303** usa o mesmo circuito e carcaça do TP301. O **TP303** é parte da série 303 de equipamentos Profibus-PA da Smar.

O **TP303** assim como o seu predecessor TP301 tem um bloco de totalização eliminando a necessidade de um equipamento de controle a parte. A necessidade da comunicação é consideravelmente reduzida, portanto menor é o tempo morto introduzido e um controle mais "rígido" é alcançado, sem mencionar a redução de custo. Os blocos permitem uma maior flexibilidade na implementação da estratégia de controle.

Leia cuidadosamente estas instruções para obter o máximo aproveitamento do TP303.

NOTA

Nos casos em que o Simatic PDM seja usado como ferramenta de configuração e parametrização, a Smar recomenda que não se faça o uso da opção "Download to Device". Esta função pode configurar inadequadamente o equipamento. A Smar recomenda que o usuário faça uso da opção "Download to PG/PC" e depois faça uso do Menu Device, onde se tem os menus dos blocos transdutores, funcionais e display e que se atue pontualmente, de acordo com menus e métodos de leitura e escrita.

ATENÇÃO

Este manual é compatível com a versão 3.XX, onde 3 indica a versão do software e XX indica o release. A indicação 3.XX significa que este manual é compatível com qualquer release de software versão 3.

Exclusão de responsabilidade

O conteúdo deste manual está de acordo com o hardware e software utilizados na versão atual do equipamento. Eventualmente podem ocorrer divergências entre este manual e o equipamento. As informações deste documento são revistas periodicamente e as correções necessárias ou identificadas serão incluídas nas edições seguintes. Agradecemos sugestões de melhorias.

Advertência

Para manter a objetividade e clareza, este manual não contém todas as informações detalhadas sobre o produto e, além disso, ele não cobre todos os casos possíveis de montagem, operação ou manutenção.

Antes de instalar e utilizar o equipamento, é necessário verificar se o modelo do equipamento adquirido realmente cumpre os requisitos técnicos e de segurança de acordo com a aplicação. Esta verificação é responsabilidade do usuário.

Se desejar mais informações ou se surgirem problemas específicos que não foram detalhados e ou tratados neste manual, o usuário deve obter as informações necessárias do fabricante Smar. Além disso, o usuário está ciente que o conteúdo do manual não altera, de forma alguma, acordo, confirmação ou relação judicial do passado ou do presente e nem faz parte dos mesmos.

Todas as obrigações da Smar são resultantes do respectivo contrato de compra firmado entre as partes, o qual contém o termo de garantia completo e de validade única. As cláusulas contratuais relativas à garantia não são nem limitadas nem ampliadas em razão das informações técnicas apresentadas no manual.

Só é permitida a participação de pessoal qualificado para as atividades de montagem, conexão elétrica, colocação em funcionamento e manutenção do equipamento. Entende-se por pessoal qualificado os profissionais familiarizados com a montagem, conexão elétrica, colocação em funcionamento e operação do equipamento ou outro aparelho similar e que dispõem das qualificações necessárias para suas atividades. A Smar possui treinamentos específicos para formação e qualificação de tais profissionais. Adicionalmente, devem ser obedecidos os procedimentos de segurança apropriados para a montagem e operação de instalações elétricas de acordo com as normas de cada país em questão, assim como os decretos e diretivas sobre áreas classificadas, como segurança intrínseca, prova de explosão, segurança aumentada, sistemas instrumentados de segurança entre outros.

O usuário é responsável pelo manuseio incorreto e/ou inadequado de equipamentos operados com pressão pneumática ou hidráulica, ou ainda submetidos a produtos corrosivos, agressivos ou combustíveis, uma vez que sua utilização pode causar ferimentos corporais graves e/ou danos materiais.

O equipamento de campo que é referido neste manual, quando adquirido com certificado para áreas classificadas ou perigosas, perde sua certificação quando tem suas partes trocadas ou intercambiadas sem passar por testes funcionais e de aprovação pela Smar ou assistências técnicas autorizadas da Smar, que são as entidades jurídicas competentes para atestar que o equipamento como um todo, atende as normas e diretivas aplicáveis. O mesmo acontece ao se converter um equipamento de um protocolo de comunicação para outro. Neste caso, é necessário o envio do equipamento para a Smar ou à sua assistência autorizada. Além disso, os certificados são distintos e é responsabilidade do usuário sua correta utilização.

Respeite sempre as instruções fornecidas neste Manual. A Smar não se responsabiliza por quaisquer perdas e/ou danos resultantes da utilização inadequada de seus equipamentos. É responsabilidade do usuário conhecer as normas aplicáveis e práticas seguras em seu país.

ÍNDICE

SEÇÃO 1 - INSTALAÇÃO	1.1
W/ ("W/" INDICA CERTIFICACÃO DARA LISO EM ATMOSERAS SALINAS)	
BARREIRA DE SEGURANCA INTRÍNSECA	
FONTE DE ALIMENTAÇÃO	1.0
ΙΜΑ ΒΟΤΑΤΙΛΟ Ε Ι ΙΝΙΕΑΡ	1.0
DISPOSITIVO CENTRALIZADOR DE IMÃS (LINEAR)	1.9
SENSOR DE POSIÇÃO REMOTO	1 10
INSTALAÇÕES EM ÁREAS PERIGOSAS	
SEÇÃO 2 - OPERAÇÃO	2.1
DESCRIÇÃO FUNCIONAL – SENSOR HALL	
DESCRIÇÃO FUNCIONAL DO CIRCUITO	
SEÇÃO 3 - CONFIGURAÇÃO	3.1
BLOCO TRANSDUTOR	
DIAGRAMA DO BLOCO TRANSDUTOR	
DESCRIÇÃO DOS PARAMETROS DOS BLOCOS TRANSDUTORES	
ATRIBUTOS DOS PARAMETROS DOS BLOCOS TRANSDUTORES	
OBJETO DE VISUALIZAÇÃO DO BLOCO TRANSDUTOR	
COMO CONFIGURAR O BLOCO TRANSDUTOR	
COMO CONFIGURAR O BLOCO DE ENTRADA ANALOGICO	
CONFIGURAÇÃO CICLICA	
COMO CONFIGURAR O BLOCO TOTALIZADOR	
DIAGNÓSTICOS CÍCLICOS	
SECÃO 4 - PROCEDIMENTOS DE MANUTENCÃO	4.1
GERAL	
RECOMENDAÇÕES PARA MONTAGEM DE EQUIPAMENTOS APROVADOS	COM A CERTIFICAÇÃO IP66/68
W ("W" INDICA CERTIFICAÇÃO PARA USO EM ATMOSFERAS SALINAS)	
PROCEDIMENTO DE DESMONTAGEM	
PROCEDIMENTO DE MONTAGEM	
INTERCAMBIABILIDADE	
VISTA EXPLODIDA	
ACESSÓRIOS E PRODUTOS RELACIONADOS	
RELAÇÃO DAS PEÇAS SOBRESSALENTES	
TESTE DE ISOLAMENTO DA CARCAÇA	
SEÇÃO 5 - CARACTERÍSTICAS TÉCNICAS	5.1

SEÇÃO 5 - CARACTERÍSTICAS TÉCNICAS	5.1	1
ESPECIFICAÇÕES FUNCIONAIS	5.1	L
ESPECIFICAÇÕES DE DESEMPENHO	5.1	L
ESPECIFICACÕES FÍSICAS	5.1	i
CÓDIGO DE PEDIDO	5.2	2
		-

APÊNDICE A - INFORMAÇÕES SOBRE CERTIFICAÇÕES	A.1
APÊNDICE B – FSR – FORMULÁRIO PARA SOLICITAÇÃO DE REVISÃO	B.1
RETORNO DE MATERIAIS	B.2

Fluxograma de Instalação

7

INSTALAÇÃO

As inst

Geral

ΝΟΤΑ
alações feitas em áreas classificadas devem seguir as recomendações da norma NBR/IEC60079-14.

		NOTA
Certificação para A	Areas Classificadas,	veja: Apêndice "A"

A precisão global de medição e controle depende de muitas variáveis. Embora o Transmissor de Posição tenha um desempenho de alto nível, uma instalação adequada é necessária para aproveitar ao máximo os benefícios oferecidos.

NOT

De todos os fatores que podem afetar a precisão do Transmissor de Posição, as condições ambientais são as mais difíceis de controlar. Entretanto, há maneiras de se reduzir os efeitos da temperatura, umidade e vibração.

O equipamento possui em seu circuito um sensor para indicação da temperatura interna do equipamento. No campo, o efeito da variação de temperatura é minimizado devido a esta característica. Os efeitos devido à variação de temperatura podem ser minimizados montando-se o transmissor de posição em áreas protegidas de mudanças ambientais. Em ambientes quentes, o transmissor de posição deve ser instalado de forma a evitar ao máximo a exposição direta aos raios solares. Deve-se evitar a instalação próxima de linhas ou vasos com alta temperatura. Quando necessário use isolação térmica para proteger o transmissor de posição de fontes externas de calor.

A umidade é inimiga dos circuitos eletrônicos. Em áreas com altos índices de umidade relativa devese certificar da correta colocação dos anéis de vedação das tampas da carcaça. Procure não retirar as tampas da carcaça no campo, pois cada abertura introduz mais umidade nos circuitos.

O circuito eletrônico é revestido por um verniz à prova de umidade, mas exposições constantes podem comprometer esta proteção. Também é importante manter as tampas fechadas, pois cada vez que elas são removidas, o meio corrosivo pode atacar as roscas da carcaça, pois nesta parte não existe a proteção da pintura. Use vedante não endurecível nas conexões elétricas para evitar a penetração de umidade.

Embora o Transmissor de Posição seja praticamente insensível às vibrações, devem ser evitadas montagens próximas a bombas, turbinas ou outros equipamentos que gerem uma vibração excessiva.

Montagem

A montagem do Transmissor de Posição depende do tipo de movimento ao qual se quer aplicar, se ele é linear ou rotativo. Para medir a posição de alguma parte móvel de um instrumento é necessário fixar o ímã nesta parte móvel e o transmissor de posição em qualquer tipo de suporte.

NOTA

Verifique se a seta gravada no ímã coincide com a seta gravada no transmissor quando o sistema estiver na metade do curso.

A montagem do imã em relação ao sensor de Posição deve ser tal que:

- 1. Não haja atrito entre a face interna do imã e a saliência do sensor de Posição durante a sua excursão (rotativo ou linear), através do imã.
- 2. O imã e a saliência do sensor de Posição não estejam distantes.

Recomenda-se uma distância mínima de 2 mm e máxima de 4 mm entre a face externa do imã e a face do Transmissor e Posição. Para tal, deve ser utilizado o dispositivo de centralização (linear) que encontra-se na embalagem do Transmissor de Posição

Se a montagem do Transmissor de Posição ou do ímã forem alteradas ou uma outra mudança ocorrer, o transmissor deve ser recalibrado.

IMPORTANTE

Se o autodiagnóstico detectar uma falha no transmissor, por exemplo, falha no sensor de posição, o sinal analógico irá para 3.9 mA ou para 21.0 mA para avisar o usuário (Os sinais de alarme alto e baixo são selecionados pelo usuário).

Veja a seguir as formas de montagem:

Movimento Rotativo

Monte o ímã no eixo da válvula usando o suporte do ímã.

Figura 1.2 – Transmissor de Posição em Atuador Rotativo com Sensor de Posição Remoto

Movimento Linear

Monte o ímã no eixo da válvula usando o suporte do ímã.

No processo de montagem do Transmissor de Posição com ímã linear, certificar-se de que a maior dimensão do Transmissor de Posição esteja ortogonal (90º) em relação ao movimento de deslocamento da haste aonde está acoplado o ímã.

O movimento ímã linear deve ser ortogonal em relação ao eixo maior do transmissor. Por exemplo, se o movimento do imã linear for na vertical, o eixo principal do transmissor deve estar na horizontal, como mostrado na figura 1.3.

Figura 1.3 – Transmissor de Posição no Atuador Linear

Figura 1.4 – Transmissor de Posição em Atuador Linear com sensor de Posição Remoto

A seguir estão apresentados os desenhos dimensionais do TP303 e dos ímãs.

Figura 1.5 – Desenho Dimensional do TP303

Figura 1.5.a – Desenho Dimensional dos Imãs

1.5

SUPORTE DE MONTAGEM ESPECIAL - VDI/VDE NAMUR - ROTATIVO Suporte de montagem do transmissor de posição para válvulas rotativas atuadas por atuadores tipo pinhão-cremalheira (*rack and pinion*) que seguem a norma NAMUR VDI/VDE.

altura do eixo de 20 mm.

Montagem para entre-centros de 130 mm, com altura do eixo de 30 mm.

Figura 1.5.c – Desenho Dimensional do Suporte de Montagem Especial VDI/VDE NAMUR - Rotativo

Recomendações para Montagem de Equipamentos Aprovados com a Certificação IP66/68 W ("W" indica certificação para uso em atmosferas salinas)

ΝΟΤΑ

Esta certificação é válida para os transmissores fabricados em Aço Inoxidável, aprovados com a certificação IP66/68 W. A montagem de todo material externo do transmissor, tais como bujões, conexões etc., devem ser em AÇO INOXIDÁVEL.

A conexão elétrica com rosca 1/2" - 14NPT deve ser selada. Recomenda-se um selante de silicone nãoendurecível.

A certificação perderá sua validade caso o instrumento seja modificado ou inclua peças sobressalentes fornecidas por terceiros que não sejam representantes autorizados Smar.

Rotação da Carcaça

A carcaça pode ser rotacionada para oferecer uma posição melhor do indicador digital. Para rotacionar, solte o parafuso de trava da carcaça. Veja a figura 1.6.

O display digital pode ser rotacionado. Veja a seção 5.

Ligação Elétrica

O acesso dos cabos de sinal aos terminais de ligação pode ser feito por uma das passagens na carcaça, que podem ser conectadas a um eletroduto ou prensa cabo. O bloco de ligação possui parafusos que podem receber terminais tipo garfo ou olhal, (Veja a figura 1.4). Esta tampa pode ser travada pelo parafuso de trava da tampa. Para soltar a tampa, rotacione o parafuso de trava no sentido horário.

Figura 1.6 – Parafuso de Trava da Tampa e Parafuso de Rotação da Carcaça

Para maior conveniência, existem três terminais terras: um interno, próximo à borneira e dois externos, localizados próximos à entrada do eletroduto veja a figura abaixo.

Figura 1.7 – Bloco de Ligação

O **TP303** usa o modo de tensão 31,25 Kbit/s para sinalização física, e os demais equipamentos do mesmo barramento devem usar a mesma sinalização. Todos os dispositivos são conectados em paralelo, ao longo do mesmo par de cabos.

Vários tipos de dispositivos Fieldbus podem ser conectados no mesmo barramento.

O **TP303** é alimentado via barramento. O limite para cada equipamento está de acordo com a limitação do acoplador DP/PA para um barramento que requer ou não segurança intrínseca.

Em áreas perigosas, o número de equipamentos pode ser limitado, devido a restrições de segurança intrínseca, e de acordo com pares DP/PA e limites de barreira.

O **TP303** é protegido contra polaridade reversa e pode suportar até ± 35 Vdc sem danos, mas ele não opera quando está com a polaridade invertida.

Topologia e Configuração da Rede

A topologia barramento e a topologia em árvore são suportados. Ambos têm um cabo tronco com duas terminações. Os equipamentos são conectados ao tronco por braços. Os braços podem ser integrados no equipamento obtendo assim braços com comprimento zero. Num braço pode conectarse mais de um equipamento, dependendo do comprimento. Podem ser usados acopladores ativos para estender o comprimento do braço e do tronco. Também, podem ser usados repetidores ativos para estender o comprimento de tronco.

O comprimento total do cabo, inclusive braços, entre quaisquer dois equipamentos no Fieldbus não deve exceder 1900m.

Figura 1.8 – Topologia Barramento

Figura 1.9 – Topologia Árvore

Barreira de Segurança Intrínseca

Quando o Fieldbus está em uma área que requer segurança intrínseca, uma barreira deve ser inserida no tronco entre o acoplador DP/PA e o barramento PA, quando este for do tipo não-intrínseco.

O uso do DF47 é recomendado.

Configuração do Jumper

Para trabalhar corretamente, os jumpers J1 e W1 localizados na placa principal do **TP303** devem ser configurados corretamente.

J1	Este jumper habilita o parâmetro de simulação no bloco AI.
W1	Este jumper habilita a árvore de programação do ajuste local.

Tabela 1.1 - Descrição dos Jumpers

Fonte de Alimentação

O **TP303** recebe a alimentação via barramento. A alimentação pode vir de uma unidade separada ou de outro equipamento como um controlador ou DCS.

A tensão de alimentação deve estar entre 9 a 32 Vdc para aplicações sem segurança intrínseca.

Um requerimento especial aplica-se a fonte de alimentação usada num barramento com segurança intrínseca e depende do tipo de barreira usada.

O uso do PS302 é recomendado como fonte de alimentação.

Imã Rotativo e Linear

Os modelos de imã são linear e rotativo, para utilização em atuadores lineares e rotativos, respectivamente.

Figura 1.10 – Modelos de Imãs (Linear e Rotativo)

Dispositivo Centralizador de Imãs (Linear)

Figura 1.11 - Dispositivo centralizador do imã linear

Sensor de Posição Remoto

O Sensor de Posição Remoto, é um acessório recomendado para aplicações onde existem temperaturas altas, vibrações excessivas e difícil acesso. Ele evita um desgaste excessivo do equipamento e consequentemente, a diminuição de sua vida útil.

Para uma instalação adequada do Sensor, verifique se a seta gravada no ímã está coincidindo com a seta gravada no Transmissor de Posição quando a válvula está na metade do seu curso.

A montagem do imã em relação ao Sensor de Posição deve ser tal que:

- 1. Não haja atrito entre a face interna do imã e a saliência do Sensor de Posição durante a sua excursão (rotativo ou linear), através do imã.
- 2. O imã e a saliência do Sensor de Posição não estejam distantes.

Recomenda-se uma distância mínima de 2 mm e máxima de 4 mm entre a face externa do imã e a face do Transmissor de Posição. Para tal, deve ser utilizado o dispositivo de centralização (linear) que se encontra na embalagem do Transmissor de Posição.

Figura 1.12 - Sensor de Posição Remoto

Os sinais elétricos no cabo de conexão do sensor remoto ao equipamento são de pequena intensidade. Por isso, ao instalar o cabo nos eletrodutos (limite máximo de 20 m de comprimento), mantenha-o afastado de possíveis fontes de indução e/ou interferência eletromagnética. O cabo fornecido pela Smar é blindado e, por isso, fornece uma excelente proteção contra interferências eletromagnéticas, mas, apesar dessa proteção, evite compartilhá-lo no mesmo eletroduto com outros cabos.

O conector para o Sensor de Posição Remoto é de fácil manuseio e simples instalação. Veja como instalar:

Figura 1.13 – Conectando o cabo ao Sensor de Posição Remoto

Figura 1.14 - Conectando o cabo ao Transmissor

Instalações em Áreas Perigosas

Consulte o Apêndice "A" para informações adicionais sobre certificação.

OPERAÇÃO

Descrição Funcional – Sensor Hall

O sensor Hall fornece uma tensão de saída que é proporcional ao campo magnético aplicado. Este sensor magnético é ideal para o uso em sistema de sensor de posição linear ou rotativo. O sensor Hall é imune às trepidações mecânicas.

Descrição Funcional do Circuito

Para entender o funcionamento eletrônico do transdutor refira-se a figura abaixo. A função de cada bloco é descrita a seguir:

Figura 2.1 - Diagrama de Blocos do TP303

Oscilador

O oscilador gera uma freqüência como uma função da capacitância do sensor.

Isolador de Sinal

Os sinais de controle da CPU e o sinal do oscilador são isolados a fim de se evitar aterramento da malha.

Unidade de Processamento Central (CPU), RAM, FLASH e EEPROM

A CPU é a parte inteligente do transmissor, sendo responsável pelo gerenciamento e operações de medição, execução de blocos, auto diagnóstico e comunicação. O programa é armazenado em uma memória FLASH para fácil atualização e gravação de dados, em caso de ocorrência de falta de energia. Para armazenamento temporário de dados, existe a RAM. Os dados na RAM são perdidos se a energia for cortada, mas a placa principal possui uma memória EEPROM onde os dados estáticos configurados devem ser retidos e armazenados. Exemplos de tais dados são: calibração, links e dados de identificação.

Modem Fieldbus

Monitora a atividade na linha, modula e demodula os sinais de comunicação; insere e apaga, delimita o início e o fim e checa a integridade do frame recebido.

Fonte de Alimentação

Utiliza a alimentação da linha de controle para alimentar o circuito do transmissor.

Isolamento de Energia

Isola os sinais de/para a seção da entrada. A alimentação para a seção de entrada deve ser isolada.

Sensor Hall

Mede a posição atual e alimenta o controle e a CPU.

Controle do Display

Recebe dados da CPU identificando quais segmentos do display de cristal líquido devem ser ligados. O controlador controla o plano de fundo e os sinais de controle dos segmentos.

Ajuste Local

São duas chaves que são ativadas magneticamente, sem nenhum contato externo elétrico ou mecânico, através de uma chave de fenda magnética.

Figura 2.2 - Indicador LCD

CONFIGURAÇÃO

Esta seção descreve as características dos blocos no **TP303**. Estes seguem as especificações PROFIBUS-PA, mas além destas especificações possuem recursos especiais em termos de blocos transdutores e display.

A linha 303 da Smar é integrada ao Profibus View da Smar e ao Simatic PDM, da Siemens. É possível integrar qualquer equipamento Smar 303 com qualquer ferramenta de configuração para equipamentos PROFIBUS-PA. É necessário fornecer uma descrição do equipamento ou Drive de acordo com a ferramenta de configuração. Neste manual, em vários exemplos são usados o Profibus View e o Simatic PDM.

Configuração Offline:

- 1. Primeiramente efetue "Download to PG/PC", para garantir valores válidos;
- 2. Em seguida use a opção Menu Device para realizar a configuração dos parâmetros necessários nos menus específicos.

ΝΟΤΑ
Recomenda-se não usar a opção "Download to Device". Esta função pode configurar inadequadamente o equipamento.

Bloco Transdutor

O bloco transdutor isola o bloco de função do I/O do hardware específico, tais como: sensores e atuadores. Os blocos transdutores controlam o acesso a I/O através da implementação específica do fabricante. Isto permite que o bloco transdutor seja tão freqüentemente utilizado quantas vezes forem necessárias para obter os dados válidos dos sensores sem sobrecarregar os blocos de função que os utilizam. Ele também isola os blocos de função das características específicas dos fabricantes de certos hardwares.

Acessando o hardware, o bloco transdutor pode obter os dados I/O ou passar os dados de controle para ele. A conexão entre o bloco transdutor e o bloco de função é chamado de canal. Estes blocos podem trocar dados de sua interface.

Normalmente os blocos transdutores executam as funções, tais como: linearização, caracterização, compensação de temperatura, controle e troca de dados para o hardware.

Diagrama do Bloco Transdutor

Figura 3.1 – Diagrama do Bloco Transdutor para o TP303

Descrição dos Parâmetros dos Blocos Transdutores

Parâmetro	Descrição				
SENSOR_VALUE	Este parâmetro contém o valor direto do sensor. O valor medido do sensor sem calibração. Unidade deriva de SENSOR UNIT.				
SENSOR HI LIM	Este parâmetro contém o valor do limite superior. A unidade deriva do SENSOR UNIT.				
SENSOR_LO_LIM	Este parâmetro contém o valor do limite inferior. A unidade deriva do SENSOR_UNIT.				
CAL_POINT_HI	Este parâmetro possui o mais alto valor calibrado. Para a calibração do ponto limite superior é necessário fornecer o valor mais alto medido do sensor e transferir este ponto como HIGH para o transmissor. A unidade deriva do SENSOR_UNIT.				
CAL_POINT_LO	Este parâmetro possui o mais baixo valor calibrado. Para a calibração do ponto limite inferior é necessário fornecer o valor mais baixo medido do sensor e transferir este ponto como LOW para o transmissor. A unidade deriva do SENSOR_UNIT.				
CAL_MIN_SPAN	Este parâmetro contém o valor mínimo permitido para o span. Esta informação mínima do span é necessária para assegurar que ambos os pontos (superior e inferior) não estejam muito próximos quando a calibração for feita. A unidade deriva do SENSOR_UNIT.				
MAINT_DATE	A data da última manutenção.				
SENSOR_UNIT	Este parâmetro contém os índices dos códigos das unidades de engenharia para os valores de calibração. Neste caso o código da unidade é %.				
SENSOR_SN	O número de série do sensor.				
TRIMMED_VALUE	Este parâmetro contém o valor do sensor após o processamento do trim. A unidade deriva do SENSOR_UNIT.				
PRIMARY_VALUE	Este parâmetro contém o valor medido e o estado disponível para o bloco funcional. A unidade do PRIMARY_VALUE é o PRIMARY_VALUE_UNIT.				
PRIMARY_VALUE_TYPE	Este parâmetro contém a aplicação do equipamento. (> 128: manufacture specific)				
PRIMARY_VALUE_UNIT	Este parametro contem os indices dos codigos para as unidades de engenharia para o valor primário. Para este caso, o código da unidade é % ou unidades de massa ou de fluxo (m ³ /s, m ³ /h, L/s, L/h, CFM, CFD, GPM, gal/d, bbl/d, g/min, Kg/s, Kg/h, t/min, t/d, lb/min, lb/d, m ³ /min, m ³ /d, L/min, CFS, CFH, gal/s, gal/h, bbl/s, bbl/h, g/s, g/h, Kg/min, Kg/d, t/h, lb/s, lb/h).				
SECONDARY_VALUE_1	Este parâmetro contém o valor e o estado disponível para o bloco funcional.				
SECONDARY_VALUE_1_UNIT	Este parâmetro contém as unidades do SECONDARY_VALUE_1.				
SECONDARY_VALUE_2	Este parametro contem o valor medido apos a escala de entrada e o estado disponível para os blocos funcionais. A unidade relacionada é SECONDARY_VALUE_UNIT_2.				
SECONDARY_VALUE_2_UNIT	Este parâmetro contém as unidades do SECONDARY_VALUE_2 definidos pelo fabricante.				
SCALE_IN	Esta e a conversao de entrada da corrente em PRIMARY_VALUE usando a escala superior e inferior. A unidade relacionada é o PRIMARY_VALUE_UNIT.				
SCALE_OUT	Este é o valor da conversão de saída usando a escala superior e inferior. A unidade relacionada é a PRIMARY_VALUE_UNIT.				
MAX_SENSOR_VALUE	Armazena o máximo SENSOR_VALUE do processo. Um acesso à gravação neste parâmetro, reseta o valor de momento. A unidade é definida por SENSOR_UNIT.				
MIN_SENSOR_VALUE	Armazena o mínimo SENSOR_VALUE do processo. Um acesso à gravação neste parâmetro, reseta o valor atual. A unidade é definida em SENSOR_UNIT.				
SECONDARY_VALUE	Indica o valor e o estado da temperatura.				
SECONDARY_VALUE_UNIT	A unidade do valor secundário. Para este caso será sempre Celsius.				
CAL_TEMPERATURE	O ponto da calibração para o sensor de temperatura.				
DIGITAL_HALL	O valor digital e o estado para sensor Hall.				
DIAGNOSTIC_STATUS	Initia o estado do bico transdutor. 0x0001, "None" (Nenhum) 0xfffe, "Ok" 0x0002, "Saturated Hall" (Sensor Hall saturado) 0xfffd, "Hall is ok" (Sensor Hall ok) 0x0004, "No mov or no magnetic part" (Nenhum movimento ou peça magnética) 0xfffb, "Magnetic part is ok" (Peça magnética está ok) 0x0008, "Burn out" 0xfff7, "No burn out" 0x0010, "Temperature out of work range" (Temperatura fora da faixa de trabalho) 0xffef, "Temp is ok" (Temperatura está ok)				
READ_HALL_CAL_POINT_HI	O ponto de calibração alto para o sensor Hall.				
READ_HALL_CAL_POINT_LO	O ponto de calibração baixo para o sensor Hall.				
ACTION_TYPE	Seleciona a ação direta ou reversa: 0 = direta 1 = reversa				
BACKUP_RESTORE	 Este parametro permite salvar e restaurar os dados de acordo com procedimentos da calibração e da fábrica. Possui as seguintes opções: , "Factory Cal Restore", (Reestabelece calibração de fábrica) , "Last Cal Restore", (Reestabelece última calibração) , "Default Data Restore", (Reestabelece dados Default) , "Shut-Down Data Restore", (Reestabelece dados do sensor) , "Factory Cal Backup", (Salva os dados como última calibração válida) , "Last Cal Backup", (Salva os dados antes de se desenergizar) 				

	15, "Sensor Data Backup", (Salva os dados do sensor) 0, "None", (Nenhum)
XD_ERROR	Indica a condição do processo de calibração de acordo com: {16, "Default value set"}, (Ajuste do valor Default) {22, "Applied process out of range"},("Processo aplicado fora da faixa") {26, "Invalid configuration for request"},("Configuração inválida para esta solicitação") {27, "Excess correction"},("Correção excessiva") {28, "Calibration failed"},("Falha de calibração")
MAIN_BOARD_SN	Número de série da placa principal.
EEPROM_FLAG	Indica que o equipamento está gravando dados na memória EEPROM: 0 = false (falso) 1 = true (verdadeiro)
ORDERING_CODE	Indica a informação sobre o sensor e o controle de produção da fábrica.

Tabela 3.1 - Descrição dos Parâmetros dos Blocos Transdutores

Atributos dos Parâmetros dos Blocos Transdutores

Relativo	Parametro Mnemonico	Tipo de Objeto	Tipo de Dado	Armaz.	Tam	Acesso	Parâmetro / Tipo de transporte	Valor Padrão	Ordem Download	Mandatório Opcional (Classe)
Parâmetro padrão										
Parâmetros Adicionais para o Bloco Transdutor										
8 3	SENSOR_VALUE	Simples	Float	D	4	r	C/a	0	-	M (B)
9 5	SENSOR_HI_LIM	Simples	Float	Ν	4	r	C/a	0	-	M (B)
10 \$	SENSOR_LO_LIM	Simples	Float	Ν	4	r	C/a	0	-	M (B)
11 (CAL_POINT_HI	Simples	Float	Ν	4	r,w	C/a	100.0	-	M (B)
12 (CAL POINT LO	Simples	Float	Ν	4	r,w	C/a	0.0	-	M (B)
13 (CAL MIN SPAN	Simples	Float	Ν	4	r	C/a	0	-	M (B)
14	 MAINT_DATE	Simples	Octet String	S	16	w,w	C/a			O(B)
15 \$	SENSOR_UNIT	Simples	Unsigned 16	Ν	2	r,w	C/a	1342	-	M (B)
16 \$	SENSOR_SN	Simples	Unsigned 32	Ν	4	r,w	C/a		-	M (B)
17	TRIMMED_VALUE	Grava	DS-33	D	5	r	C/a	0.0	-	M (B)
18 F	PRIMARY_VALUE	Grava	DS-33	D	5	r	C/a	0.0	-	M (B)
19 F	PRIMARY_VALUE_UNIT	Simples	Unsigned 16	Ν	2	r,w	C/a	-	-	M (B)
20 F	PRIMARY_VALUE_TYPE	Simples	Unsigned 16	Ν	2	r,w	C/a	255	-	M (B)
21 \$	SECONDARY_VALUE_1	Grava	DS-33	D	5	r	C/a	0.0	-	O (B)
22	SECONDARY_VALUE_1_UNIT	Simples	Unsigned 16	Ν	2	r,w	C/a	E.U.	-	O (B)
23 \$	SECONDARY_VALUE_2	Grava	DS-33	D	5	r	C/a	0	-	O (B)
24	SECONDARY_VALUE_2_UNIT	Simples	Unsigned 16	Ν	2	r,w	C/a	%	-	O (B)
25	SCALE_IN	Array	Float	S	8	r,w	C/a	100.0 0.0	-	O(B)
26	SCALE_OUT	Array	Float	S	8	r,w	C/a	100.0 0.0	-	O(B)
27	MIN SENSOR VALUE	Simples	Float	N N	4	r,w	C/a	0.0	-	O (B)
29	SECONDARY_VALUE	Grava	DS-33	D	5	r	C/a	0.0	-	O (B)
30		Simples	Unsigned 16	N	2	r	C/a	Celsius	-	O (B)
31	CAL_TEMPERATURE	Simples	Float	N	4	r,w	C/a	Celsius		O (B)
32	DIGITAL_HALL	Grava	DS-33	D	5	r	C/a	0.0	-	O (B)
33	DIAGNOSTIC_STATUS	Simples	Unsigned 16	D	2	r	C/a	0x0001	-	O (B)
34	READ_HALL_CAL_POINT_HI	Simples	Float	N	4	r	C/a			O (B)
35	KEAD_HALL_CAL_POINT_LO	Simples	Float	N C	4	r rw	C/a	direct		O (B)
37	BACKUP RESTORE	Simples	Unsigned 8	<u> </u>	1	r.w	C/a		-	0 (B)
38	XD_ERROR	Simples	Unsigned 8	D	1	r	C/a	0x10	-	O (B)
39	MAIN_BOARD_SN	Simples	Unsigned 32	s	4	r,w	C/a	0	-	O (B)
40	EEPROM_FLAG	Simples	Unsigned 8	D	1	r	C/a	FALSE	-	O (B)
41		Array	Unsigned 8	S	50	r,w	C/a	-	-	O (B)

Objeto de	Visualizaç	ão do	Bloco	Transdutor
-----------	------------	-------	-------	------------

Índice Relativo	Mnemônico do Parâmetro	View_1	View_2	View_3	View_4
1	ST_VER	2			
2	TAG_DESC				
3	STRATEGY				
4	ALERT_KEY				
5	TARGET_MODE				
6	MODE_BLK	3			
7	ALARM_SUM	8			
8	SENSOR_VALUE				
9	SENSOR_HI_LIM				
10	SENSOR_LO_LIM				
11	CAL_POINT_HI				
12	CAL_POINT_LO				
13	CAL_MIN_SPAN				
14	MAINT_DATE				
15	SENSOR_UNIT				
16	SENSOR_SN				
17	TRIMMED_VALUE				
18	PRIMARY_VALUE	5			
19	PRIMARY_VALUE_UNIT				
20	PRIMARY_VALUE_TYPE				
21	SECONDARY_VALUE_1				
22	SECONDARY_VALUE_1_UNIT				
23	SECONDARY_VALUE_2				
24	SECONDARY_VALUE_2_UNIT				
25	SCALE_IN				
26	SCALE_OUT				
27	MAX_SENSOR_VALUE				
28	MIN_SENSOR_VALUE				
29	SECONDARY_VALUE				
30	SECONDARY_VALUE_UNIT				
31	CAL_TEMPERATURE				
32	DIGITAL_HALL				
33	DIAGNOSTIC_STATUS				
34	READ_HALL_CAL_POINT_HI				
35	READ_HALL_CAL_POINT_LO				
36	ACTION_TYPE				
37	BACKUP_RESTORE				
38	XD_ERROR				
39	MAIN_BOARD_SN				
40	EEPROM_FLAG				
41	ORDERING_CODE				
	TOTAL	13 + 5 = 18 bytes			

Tabela 3.3 - Objeto de Visualização do Bloco Transdutor

Como Configurar o Bloco Transdutor

O bloco transdutor possui um algoritmo, um conjunto de parâmetros *contained* e um canal conectando-o ao bloco de função.

O algoritmo descreve o comportamento do transdutor como uma função de transferência de dados entre o hardware I/O e o outro bloco de função. O conjunto de parâmetros contained significa que você não pode conectá-los a outros blocos e publicar a conexão via comunicação. Ele define a interface entre o usuário e o bloco transdutor. Eles podem ser divididos em Padrão e Específico do Fabricante.

Os parâmetros padrão estarão presentes para cada classe dos equipamentos, tais como: pressão, temperatura, atuador, etc., qualquer que seja o fabricante, mas os específicos dos fabricantes são definidos pelo fabricante. Como parâmetros comuns específicos dos fabricantes temos: os ajustes da calibração, a informação do material, a curva de linearização, etc.

Ao realizar uma rotina padrão como uma calibração, você é conduzido passo a passo através de um método. O método é geralmente um guia de referência para você nas tarefas mais comuns. A ferramenta de configuração identifica cada método associado aos parâmetros e habilita a interface para fazê-lo.

O Simatic PDM (Gerenciador dos Equipamentos de Processo) software de configuração Profibus View da Smar ou da Siemens, por exemplo, podem configurar vários parâmetros do bloco transdutor de entrada.

Figura 3.2 – Bloco Trandutor e de Função - Profibus View

📕 SIMATIC PDM - Tp3	03				- 🗆 🗙
<u>File Device View Option</u>	ons <u>H</u> elp				
	1 🕺				
🖃 🧰 TP303 (Offline)	Parameter	Value	Unit	Statu	s 🔺
🕀 🧰 Device Info	TP303 (Offline)				
H Analog Input	» Device Info				
E Totalizer	» » Manufacture Info				
🕀 🧰 Display	Manufacturer	Smar		Loaded	
	Device ID	800902		Loaded	
	» » Define Device B	lock Tags			
	Physical Tag	PHYSICAL BLOCK		Loaded	
	Transducer Tag	TRANSDUCER BLOCK - TP303		Loaded	
	Analog Input Tag	ANALOG INPUT BLOCK		Loaded	
	Totalizer Tag	TOTALIZER BLOCK		Loaded	
	Display Tag	DSP BLOCK		Loaded	
	» » Descriptor, Message and Date				
	Descriptor			Loaded	
	Message			Loaded	
	Installation Date			Loaded	
	Ordering Code	. [Loaded	
	» » Serial Numbers				
	Serial Number	509999104		Loaded	
	Sensor Serial Number	0		Loaded	
	Main Board Serial #	65636		Loaded	
	» » Device Revision:	ŝ			
Press F1 for help.		Specialis	t Conne	ected	NUM /

Figura 3.3 – Blocos de Função e Transdutores – Simatic PDM

	Setting	Backup Restore	
	Tra	nsducer Block	
ependendo da		Scale of Input Value	,
licação, o		Upper [EU(100%)]	3,000
usuário pode ajustar a escala do		Lower [EU(0%)]	97,000
		-Scale of Output Valu	16
O usuário pode selecionar a escala e a unidade do		Upper [EU(100%)]	99,000
		Lower [EU(0%)]	0,000
lor de saida		Output Unit	
		Output Unit (EU)	
elecionaro valor		Secondary Value Un	it
ordo com o	7	SV2 Unit	26
agrama do Ensdutor			
			Write

Para configurar o bloco transdutor selecione-o no menu principal:

Figura 3.4 – Configuração Bloco Transdutor - Profibus View

and s as	0.000		
Set Scale of Inpu	it Value		
Lower [EU(0%)]		%	Write
Upper (EU(100%)] 1 00	%	
Set Scale of Out;	out Value		
Lower [EU(0%)]	0	m³/s	Write
Upper (EU(100%)] 100	m³/s	
Select Output Un	iit		
Output Unit (EU)	m³/s		Write
Select Secondar	y Value Unit		
SV2 Unit	%	¥	Write

Figura 3.5 – Configuração Bloco Transdutor - Simatic PDM

Como Configurar o Bloco de Entrada Analógico

O bloco de entrada analógico leva o dado de entrada do bloco transdutor, selecionado através do número do canal, e disponibiliza-o para os outros blocos de função em sua saída. O bloco transdutor fornece a unidade de entrada analógica e ao alterá-la neste bloco, a unidade PV_SCALE também é alterada. Opcionalmente, um filtro pode ser aplicado no sinal do processo, cuja constante de tempo é PV_FTIME. Considerando uma pequena mudança na entrada, este é o período em segundos até que a PV alcance 63,2% do valor final. Se o valor PV_FTIME for zero, o filtro é desabilitado. Para maiores detalhes, veja as especificações dos blocos funcionais.

Para configurar o bloco de entrada analógico selecione-o no menu principal. Neste bloco., o usuário pode configurar o modo de operação do bloco, selecionar o canal, as escalas e as unidades para os valores de entrada e de saída e o damping.

ΝΟΤΑ				
NOTA				
O TB202 pagauji implementada a função do amortacimento (demping)				
o resus possul implementada a função de amonecimento (damping).				

Figura 3.6 - Ajustes Básicos para o Bloco de Entrada Analógico - Profibus View

Select Block Mode			
Target	AUTO		VVrite
Select Input			
Channel	PV	•	VVrite
Set Scale of Input \	/alue		10
Upper [EU(100%)]	100	m³/s	VVrite
Lower [EU(0%)]	0	m³/s	
Set Scale of Outpu	t Value -		
Upper [EU(100%)]	100		VVrite
Lower [EU(0%)]	0		
Unit	%	<u>•</u>	
Set PV Damping V	alue		
Damping	0	s	VVrite

Figura 3.7 - Ajustes Básicos para o Bloco de Entrada Analógico - Simatic PDM

	Analog Input Bloc	Config Block Mode
	Alarm/Warning Limits	101.000
	Opper Limit Harm	101,000
	upper Limit warning	161,600
O usuário pode ajusta	Lower Limit Alarm	-1,000
os limites do	Lower Limit Warning	-1,000
Alaline/Auventencia.	Limit Hysteresis	0,500
	Unit	N. <u>-</u> X
	Fail Safe Values	
Condições de Falha	Fail Safe Type	FSAFE_VALUE
Segura.	Fail Safe Value	2,000
	i.	
		Write Help

Selecionando a página *Advanced Settings*, o usuário pode configurar as condições para os alarmes e os avisos, assim como a condição de falha segura (fail safe).

Figura 3.8 – Ajustes Avançados para o Bloco de Saída Analógico - Profibus View

-Set Alarm/Warning Li	mits		
Upper Limit Alarm	1.#INF		Write
Upper Limit Warning	1.#INF		
Lower Limit Alarm	0		
Lower Limit Warning	0		
Limit Hysteresis	0.5	%	
Unit	%	-	
-Set Fail Safe Values -			
Fail Safe Type	Last Valid Output	-	Write
Fail Safe Value	0	%	

Figura 3.9 – Ajustes Avançados para o Bloco de Saída Analógico - Simatic PDM

	X
	Basic Settings Advanced Settings Config Block Mode
	Analog Input Block
O usuário pode ajustar	Block Mode
O usuário pode monitorar o parámetro de saida	Output Value 0.000
o parâmetro de salda e verificar o estado atual do alarme.	Current Alerm Sum No Alerm

Figura 3.10 - Configuração Online para o Bloco Analógico de Entrada - Profibus View

line Configuration - Totalizer -	TOT- Block Mode (Online)	
Config Block Mode		
Select Block Mode		
Target AUTO	Actual AUTO	×
Totalizer Output		
Value 0	m ^a Status Bad, Value not accepted	V
Current State Alarm Sum No A	larm	
VVrite		

Figura 3.11 - Configuração Online para o Bloco Analógico de Entrada - Simatic PDM

Configuração Cíclica

Tanto o PROFIBUS-DP quanto o PROFIBUS-PA provêm mecanismos no protocolo contra falhas e erros de comunicação e, por exemplo, durante a inicialização, várias fontes de erros são verificadas. Após a energização (conhecida como power up) os equipamentos de campo (os escravos) estão prontos para a troca de dados cíclicos com o mestre classe 1, mas para isto, a parametrização no mestre para aquele escravo deve estar correta. Estas informações são obtidas através dos arquivos GSD, que deve ser um para cada equipamento.

Através dos comandos abaixo, o mestre executa todo processo de inicialização com equipamentos PROFIBUS-PA:

- Get_Cfg: carrega a configuração dos escravos e verifica a configuração da rede;
- Set_Prm: escreve em parâmetros dos escravos e executa serviços de parametrização da rede;
- Set_Cfg: configura os escravos segundo entradas e saídas;
- Get_Cfg: um segundo comando, onde o mestre verificará a configuração dos escravos.

Todos estes serviços são baseados nas informações obtidas dos arquivos GSD dos escravos.

Observando o arquivo GSD do **TP303**, este traz detalhes de revisão de hardware e software, bus timing do equipamento e informações sobre a troca de dados cíclicos. O **TP303** possui 2 blocos funcionais: 1 Al e 1 Totalizador. Além disso, possui o módulo vazio para aplicações onde se quer configurar apenas alguns blocos funcionais.

Deve-se respeitar a seguinte ordem cíclica dos blocos: AI, TOT. Vamos admitir que se queira trabalhar somente com o bloco AI, sendo assim, deve-se configurar: AI, EMPTY_MODULE.

A maioria dos configuradores PROFIBUS utiliza-se de dois diretórios onde se deve ter os arquivos GSD's e bitmap's dos diversos fabricantes. Os GSD's e bitmap's para os equipamentos da Smar podem ser adquiridos via internet no site <u>www.smar.com.</u>

Veja a seguir um exemplo típico onde se tem os passos necessários à integração de um equipamento **TP303** em um sistema PA e que pode ser estendido a qualquer equipamento:

- Copiar o arquivo GSD do TP303 para o diretório de pesquisa do configurador PROFIBUS, normalmente chamado de GSD.
- Copiar o arquivo bitmap do TP303 para o diretório de pesquisa do configurador PROFIBUS, normalmente chamado de BMP.
- Uma vez escolhido o mestre, deve-se escolher a taxa de comunicação, lembrando-se que quando se tem os couplers, podemos ter as seguintes taxas: 45.45 kbits/s (Siemens), 93.75 kbits/s (P+F) e 12Mbits/s (P+F, SK2).Quando se tem o link device, pode-se ter até 12Mbits/s.
- Acrescentar o TP303, especificando seu endereço no barramento.
- Escolher a configuração cíclica via parametrização com o arquivo GSD, onde é dependente da aplicação, conforme visto anteriormente. Para o bloco AI, o **TP303** estará fornecendo ao mestre o valor da variável de processo em 5 bytes, sendo os quatro primeiro em formato ponto flutuante e o quinto byte o status que traz informação da qualidade desta medição. Quando se trabalha com o bloco TOT, pode-se escolher o valor da totalização (Total) e ainda, a integração é feita levando-se em conta o modo de operação (Mode_Tot), onde pode-se definir como será feita a totalização (somente valores positivos de vazão, somente valores negativos de vazão, ambos valores). Também se pode resetar a totalização e configurar um valor de preset através do parâmetro Set_Tot. A opção de reset é muito utilizada em processos por bateladas.
- Pode-se ainda ativar a condição de watchdog, onde após a detecção de uma perda de comunicação pelo equipamento escravo com o mestre, o equipamento poderá ir para uma condição de falha segura.

Como Configurar o Bloco Totalizador

O bloco de função totalizador leva os dados de entrada do bloco transdutor, selecionado através do número do canal, e o integra em função do tempo. Este bloco normalmente é usado para totalizar o fluxo dando a massa ou o volume total no decorrer do tempo ou totalizar a potência dando a energia total.

O bloco de função totalizador integra a variável (por examplo: a taxa de fluxo ou a potência) em função do tempo para a quantidade correspondente (ex.: volume, massa ou distância). A unidade taxa do totalizador é fornecida pelo bloco transdutor. Internamente, as unidades de tempo são convertidas em taxa de unidades por segundo. Cada taxa, multiplicada pelo tempo de execução do bloco, fornece a massa, o volume ou o incremento de energia por execução do bloco.

O total é a quantidade totalizada. A unidade de engenharia usada na saída é a UNIT_TOT. A unidade

de saída deve ser compatível com a unidade da entrada fornecida pelo transdutor através do canal. Portanto, se a taxa de entrada for o fluxo de massa (como Kg/s, g/min, ton/h) a unidade de saída deverá ser a massa (como kg, g, ton, lb, etc.). Para maiores detalhes, veja especificações dos blocos funcionais.

Para configurar o Bloco totalizador selecione-o no menu principal. Neste bloco, o usuário pode configurar o modo de operação do bloco, selecionar o canal, o modo totalizador e a unidade para o total.

Т	otalizer Bloc	k		
	-Block Mode			
) usuário pode ujustar o bloco	Target	AUTO	•	
n 000.	Input			
) usuário pode	Channel	PV	•	
Jo canal.	Totalizer Mo	de		
	Mode	Negative values only		
D usuário pode	Total Unit			
on dições para a otalização e a unidade	Linit	m3		
indade.				

Figura 3.12 – Configuração Online - Ajustes Básicos para Bloco Totalizador - Profibus View

Selecti	HIOCK MODE		
Target		VVrite	
Selecti	nput		
Channe	el PV	Write	
Select ⁻	Fotalizer Mode		
Mode	Pos. and neg. values 💌	Write	
Select ⁻	Fotal Unit		
Jnit	m ³	Write	

Figura 3.13 – Configuração Online - Ajustes Básicos para Bloco Totalizador - Simatic PDM

		×
	Basic Settings Advanced Settings C	onfig Block Meda
	Totalizer Block	
	Alarm/Warning Limits	
	Upper Limit Alarm	100,000
	Upper Limit Warning	100,000
Condições de alarme —— e limites.	Lower Limit Alarm	0,000
	Lower Limit Warning	0,000
	Limit Hysteresis	1,000
	Fail Safe Values	
Ousuário pode ajustar ovalor de falha segura: Run, Hold ou	Fail Safe Type	Run
Memory.		
		Wate Preip

Escolhendo a janela *Advanced Settings*, você pode ajustar os limites de alarme e advertência, assim como condições de falha segura:

Figura 3.14 – Ajustes avançados para os Blocos Totalizadores - Profibus View

- Set Alarm/Warning Lir	nits	G	7
Upper Limit Alarm	1.#INF	m³ W	rite
Upper Limit Warning	1.#INF	mª	
Lower Limit Alarm	0	m ³	
Lower Limit Warning [0	m³	
Limit Hysteresis [0	m³	
Set Fail Safe Values -			
Fail Safe Mode	Run	• W	rite

Figura 3.15 – Ajustes avançados para os Blocos Totalizadores - Simatic PDM

	Nacio Sattiano Advanced Sattiano Confin Bisch Mode
	Totalizer Block
	Block Mode
O usuário pode ajustar a operação no bloco modo.	Target AUTO
O usuário pode	Value 0,000
monitorar o parâmetro totalizador de saída e verificar o alarme do estado atual.	Status Good
	Current Alarm Sum - Lower Limit Alarm - Lower Limit Warning 📺

Figura 3.16 – Configuração Online - Bloco Modo para o Bloco Totalizador - Profibus View

nline Configuration - Totaliz	er - TOT- Block Mode (Online)	
Config Block Mode		
Select Block Mode		
Target AUTO	Actual AUTO	<u></u>
Totalizer Output		
Value 0	m ³ Status Bad, Value not accepted	<u> </u>
Current State Alarm Sum	lo Alarm	
V	Vrite	
-		
Close		Help

Figura 3.17 – Configuração Online - Bloco Modo para o Bloco Totalizador - Simatic PDM

	Totalizer Block	×
O usuário pode selecionar: totalize, reset e entrar com o valor para a onera rêo preset	Preset Totalizer Set/Preset Total Preset Value	Totalize 5,000
O usuário pode monitorar a saída totalizadora.	Value (2,000	<u> </u>
		Write

Figura 3.18 - Configuração Online - Set/Preset para Bloco Totalizador - Profibus View

nline Configura	ition - Totalizer - TOT- Set/Preset Total (Online)	6
Set/Preset Total	1	
_ Set/Preset T	otalizer	
Set/Preset T	otal Totalize	
Preset Value	0	
l ┌─Totalizer Ou	put	
Value	0 m³ Status Bad, Value not a	accepted
Meito	1	
vviite		
Close		Help

Figura 3.19 – Configuração Online - Set/Preset para Bloco Totalizador - Simatic PDM

Trim Inferior e Superior

Esta informação é para a calibração de posição. O processo de calibração é usado para relacionar a leitura do valor do canal com a entrada da posição aplicada. Seis parâmetros são definidos para configurar este processo: CAL_POINT_HI, CAL_POINT_LO, CAL_MIN_SPAN, SENSOR_UNIT, SENSOR_HI_LIM e SENSOR_LO_LIM. Os parâmetros CAL_* definem os valores superior e inferior

calibrados para este sensor e o valor mínimo permissível para a calibração. O SENSOR_UNIT permite que o usuário selecione diferentes unidades para fins de calibração diferentes das unidades definidas por PRIMARY_VALUE_UNIT.

O parâmetro SENSOR_HI_LIM e SENSOR_LO_LIM definem os valores mínimo e máximo que o sensor é capaz de indicar, de acordo com o SENSOR_UNIT usado, conforme visto na figura abaixo.

Figura 3.20 – Calibração do Sensor Hall

O trim é usado para comparar o valor lido com a posição aplicada.

Trim Inferior: É usado para limitar a leitura na faixa inferior. O operador informa ao **TP303** a leitura correta para a posição.

Trim Superior: É usado para limitar a leitura na faixa superior. O operador informa ao **TP303** a leitura correta para a posição.

Usando um configurador é possível calibrar o conversor através dos parâmetros CAL_POINT_LO e CAL_POINT_HI. Esta unidade de engenharia é configurada pelo parâmetro SENSOR_UNIT. O código da unidade é %. O valor calibrado pode ser lido pelo TRIMMED_VALUE.
Trim de Posição

Via Profibus View ou Simatic PDM

É possível calibrar o transmissor através dos pontos do CAL_POINT_LO e CAL_POINT_HI. A unidade de engenharia para calibração é sempre porcentagem. Selecione o menu calibração Zero/Lower. Aplique a posição de entrada 0.0% ou o valor inferior da posição e aguarde até que a leitura do parâmetro TRIMMED_VALUE se estabilize. Escreva 0.0 ou o valor inferior no parâmetro CAL_POINT_LO.

		×
	Zero / Lower Upper	
	Transducer Block	
O último ponto inferior da calibração. Aqui, o usuário precisa entrar com o valor desejado.	Lower Calibration Point 0,000	
Entrando com o valor —	Value 0.000	
desejado, o usuário pode checar a calibração.	Status Good	
	Operation Result Good	Entrado com o valor desejado, esta tecla deve ser pressionada para completar a
	Write Help	operação.

Figura 3.21 - Posição Inferior de Calibração - Profibus View

libration - Zero/Lower/Upper (Online)		
Zero/Lower Upper		
Lower Calibration Point	%	
-Position		
Value 1.149965 % Status Good		×
Operation Result Good		y
, Write		
	:	
		Close Help

Figura 3.22 - Posição Inferior de Calibração - Simatic PDM

Para cada valor gravado uma calibração é feita no ponto desejado. Este valor deve estar dentro do limite faixa do sensor permitida.

Selecione o menu de calibração superior. Aplique a posição da entrada 100.0% ou o valor superior da posição e aguarde até que a leitura do parâmetro TRIMMED_VALUE se estabilize. Escreva 100.0

		×	
	Zero / Lower Upper		
	Transducer Block		
O último ponto inferior de calibração. Aqui, o usuário precisa — entrar com o valor desejado. Inserido o valor — desejado, esta tecla deve ser pressionada para com pletar a operação	Upper Calibration Point 100,000 Primary Value Value 0,000 Status Good	T	
operaçao.	Operation Result Good	mine Help	— Entrado com o valor desejado, o usuário pode checar a calibração.

ou o valor superior no parâmetro CAL_POINT_HI.

Figura 3.23 - Posição Superior de Calibração - Profibus View

Ajuste Local

Para entrar com o modo de ajuste local, introduza a chave magnética no orifício "Z" até "MD" aparecer no display. Remova a chave magnética de "Z" e introduza-a no orifício "S" até que apareça a mensagem "LOC ADJ". A mensagem será exibida por aproximadamente 5 segundos após a remoção da chave magnética de "S".

Usando o valor superior como exemplo:

Aplique à entrada a posição de 100.0%. Aguarde até que a leitura de corrente do parâmetro P_VAL (PRIMARY_VALUE) se estabilize e, então, atue no parâmetro UPPER até que a leitura seja de 100.0%.

Usando o valor inferior como exemplo:

Aplique à entrada a posição de 0.0%

Aguarde até que a leitura de corrente do parâmetro P_VAL (PRIMARY_VALUE) se estabilize e, então, atue no parâmetro LOWER até que a leitura seja de 0.0%.

Condições Limite para Calibração

Superior: -10.0% ε CAL_POINT_HI δ 110.0% CAL_POINT_HI#CAL_POINT_LO CAL_MIN_SPAN = 1.0%. Caso contrário, calibração inválida.

Inferior:

-10.0% ϵ CAL_POINT_HI δ 110.0% CAL_POINT_HI#CAL_POINT_LO CAL_MIN_SPAN = 1.0%. Caso contrário, calibração inválida.

Se todas as condições limites estão de acordo com essas regras, será obtido sucesso nesta operação.

NOTA

Saída do modo trim via ajuste local ocorre automaticamente quando a chave de fenda magnética não for usada durante alguns segundos. Mantendo-a no orifício, mesmo que os parâmetros LOWER ou UPPER já apresenta o valor desejado, deve-se atuar neles assim que a calibração for finalizada.

ΝΟΤΑ

Códigos para XD_ERROR:

16: Default Value Set (Valor de fábrica calibrado)

22: Out of Range (Fora da faixa)

- 26: Invalid Calibration Request (Configuração inválida para esta solicitação)
- 27: Excessive Correction (Correção excessiva)

Trim de Temperatura

Escreva no parâmetro CAL_TEMPERATURE qualquer valor entre -40°C e +85°C. Após isto, verifique o desempenho de calibração usando o parâmetro *temperature*. Você pode selecionar a unidade usando o parâmetro TEMPERATURE_UNIT. Normalmente, sua operação é feita através de um método na fábrica.

		×
	Temperature Trim	
A janela mostra o valor —— atual da calibração e permite a inserção de um novo valor.	Transducer Block	1 0
Ajustan do este parâmetro — para a temperatura atual, a indicação da temperatura no transmissor é corripida.	Calibration Temperature Point 25,000 Temperature Value 25,000 Status Good	I
		Para confirma a sua calibraç

Figura 3.25 – Tela de Configuração do Trim de Temperatura - Profibus View

ibration - Temperature	(Online)	
Calibration Temperature	Point 25 °C	
Value 25.5461	Status Good	
	Vrite	
		Close Help

Figura 3.26 – Tela de Configuração do Trim de Temperatura - Simatic PDM

Através do parâmetro Backup_Restore, o usuário pode recuperar os dados default de fábrica sobre

o sensor e os ajustes da última calibração de fábrica, assim como resgatar as calibrações. Existem as seguintes opções:

Factory Cal Restore: Recupera o último ajuste de calibração de fábrica;
Last Cal Restore: Recupera o último ajuste de calibração e salva como backup;
Default Data Restore: Recupera todos os dados default;
Factory Cal Backup: Copia os ajustes atuais de calibração para os de fábrica;
Last Cal Backup: Copia os ajustes atuais de calibração para os de backup;
None: Valores default, nenhuma ação é tomada.

No menu principal, selecionando *Backup/Restore*, você pode selecionar o backup e restaurar as operações:

Figura 3.27 – Bloco Transdutor - Backup/Restore - Profibus View

actory - Backup/F	Restore (Online)	>
Backup/Restore		
Backup/Restore	None	
	None Factory Cal Restore	
	Last Cal Restore	
	Default Data Restore Factory Cal Backup	Help

Figura 3.28 – Bloco Transdutor - Backup/Restore - Simatic PDM

Configuração do Transdutor do Display

Usando o Profibus View ou o Simatic PDM, é possível configurar o bloco transdutor do display. Como

o nome descreve, ele é um transdutor devido à interface de seu bloco com o circuito do display.

O transdutor do display é tratado como um bloco normal por qualquer ferramenta de configuração. Ou seja, este bloco possui alguns parâmetros e estes podem ser configurados de acordo com suas necessidades.

Você pode escolher até seis parâmetros para serem exibidos no display. Eles podem ser parâmetros apenas para monitoramento ou para ajustes no próprio aparelho usando uma chave de fenda magnética. O sétimo parâmetro é usado para acessar o endereço do equipamento. O usuário pode mudar este endereço de acordo com a aplicação.

Display Block		
Block Type	Transducer Block	T
Parameter Type/Index	Primary Value	
Parameter Element	2	
Mnemonic	P_VAL	
Decimal Step	0,250	
Decimal Point Place	1	
Access Permission	Monitoring	•
Alpha/Numerical	Mnemonic	

Figura 3.29 – Bloco do Display - Profibus View

elect Block Type	Transducer Block		Write
elect/Set Parameter Type/Index	Primary Value		
et Mnemonic	P_VAL		
et Decimal Step	0.25		
et Decimal Point Place	2		
elect Access Permission	Monitoring	•	
elect Alnha(Numerical	Mnemonic	-	

Figura 3.30 – Bloco do Display - Simatic PDM

Bloco do Transdutor do Display

O ajuste local é totalmente configurado pelo Profibus View ou o Simatic PDM. Ou seja, este bloco possui alguns parâmetros e estes podem ser configurados de acordo com suas necessidades.

De fábrica, são configurados com as opções de ajuste do trim inferior e superior para monitoramento do transdutor de entrada e de saída e verificação do tag. Normalmente, o transmissor é melhor configurado pelo Profibus View ou pelo Simatic PDM, mas a funcionalidade local do display permite uma ação fácil e rápida em certos parâmetros, já que não conta com as conexões da rede e da comunicação. Dentre as possibilidades de ajuste local, as seguintes opções podem ser enfatizadas: modo bloco, monitoramento da saída, visualização do tag e ajustes dos parâmetros de sintonia.

A interface com o usuário é descrita detalhadamente no capítulo relacionado à Programação usando ajuste local. Os recursos neste display e também os equipamentos de campo da série 303 possuem a mesma metodologia de manuseio. Uma vez treinado, o usuário é capaz de manusear qualquer tipo de equipamentos de campo da Smar.

Todos os blocos de função e transdutores definidos de acordo com o Profibus PA tem uma descrição de suas características escritas pelo *Device Description Language*.

Esta característica permite que outras ferramentas de configuração habilitados pelo serviço de descrição do equipamento podem interpretar estas características e torná-las acessíveis para configuração. Os blocos funcionais e os transdutores da série 303 foram rigorosamente definidos de acordo com as especificações da Profibus PA para que sejam operáveis com os equipamentos de outros fabricantes.

Para habilitar o ajuste local usando a chave de fenda magnética é necessário preparar estes parâmetros relacionados à esta operação via System Configuration.

Existem seis grupos de parâmetros, os quais podem ser pre-configurados pelo usuário para habilitar a configuração pelo ajuste local. Como exemplo, vamos supor que alguns parâmetros não queiram ser mostrados; para este caso, selecione *None* no parâmetro, *Select Block Type*. Com isso, o equipamento não levará o parâmetro relacionado (indexado) a seu bloco como um parâmetro válido.

Definição de Parâmetros e Valores

Select Block Type (Selecionar tipo de bloco)

É o tipo de bloco onde o parâmetro é localizado. O usuário pode escolher: Transducer Block (Bloco Transdutor), Analog Input Block (Bloco de Entrada Analógico), Totalizer Block (Bloco Totalizador), Physical Block (Bloco Físico) ou None (Nenhum).

Select/Set Parameter Type/Index (Selecionar/Ajustar Tipo de Parâmetro/Índice)

Este é o índice relacionado ao parâmetro que será atuado ou visualizado (0, 1, 2...). Para cada bloco existem alguns índices pré-definidos. Consulte o manual dos blocos funcionais para saber os índices a serem usados e, então, entre com o índice desejado.

Set Mnemonic (Ajuste Mnemônico)

Este é o mnemônico para identificação do parâmetro (Aceita o máximo de 16 caracteres no campo alfanumérico do display). Escolha o mnemônico (de preferência com menos de 5 caracteres), porque desta forma não será necessário rotacioná-lo no display.

Set Decimal Step (Ajuste de Decimal Step)

É o incremento e decremento em unidades decimais quando o parâmetro está em Float ou o valor do estado Float ou integer quando o parâmetro está em unidades inteiras.

Set Decimal Point Place (Ajuste da casa Decimal)

É o número de dígitos após o ponto decimal (0 a 3 dígitos decimais).

Set Access Permission (Ajuste de Permissão e Acesso)

O acesso permite que você leia, no caso da opção *Monitoring*, e grave quando a opção *Action* for selecionada. Após o acesso, o display irá mostrar as setas de incremento e decremento.

Set Alpha Numerical (Ajuste Alfa Numérico)

Estes parâmetros incluem duas opções: valor e mnemônico. Na opção valor é possível mostrar ambos os dados nos campos numérico e alfanumérico. Se o dado for maior que 10000, ele será exibido no campo alfanumérico.

Na opção mnemônico, o display pode exibir o dado no campo numérico e o mnemônico no campo alfanumérico.

Para equipamentos onde a versão do software é maior ou igual a 1.10, veja a configuração através do ajuste local.

Se você desejar visualizar um certo tag, escolha o índice relativo igual ao tag. Para configurar outros parâmetros, selecione as janelas do LCD-II ao LCD-VI:

Display Block	.CD-IV LCD-V LCD-V	I Address Togale	
Block Type	Analog Input		
Parameter Type/Index	Mode	*	
Parameter Element	2		
Mnemonic	Mode		
Decimal Step	0,010		
Decimal Point Place	2		A opção "Write"
Access Permission	Monitoring	•	selecionada para
Alpha/Numerical	Mnemonic		 a atualização da program ação do ajuste local.
		Write Help	Após este passo todos os parâm etros selecionados serão mostrados no indicador LCD.

Figura 3.31 - Parâmetros para Configuração do Ajuste Local - Profibus View

		10.5 	
elect Block Type	Analog Input	<u> </u>	Write
elect/Set Parameter Type/Index	Mode Block	×	
et Mnemonic	MODE		
et Decimal Step	0.25		
et Decimal Point Place	2		
elect Access Permission	Monitoring	•	
olort AlnhaiNumorical	Mnemonic	-	

Figura 3.32 - Parâmetros para Configuração do Ajuste Local - Simatic PDM

A janela *Local Address Change* (mudança do endereço local) permite que o usuário *enable/disable* (habilite/desabilite) o acesso à mudança do endereço do equipamento físico.

Figura 3.33 - Parâmetros para Configuração do Ajuste Local - Profibus View

Online Configuration - Display (Online)	×
LCD-I LCD-II LCD-III LCD-IV LCD-V LCD-VI Local Address Change	
Local Address Change Enable Write Disable Enable	
Close	Help

Ao entrar no ajuste local e rotacionar os parâmetros usando a chave de fenda magnética, após a saída para operação normal, como, por exemplo, no monitoramento e se o parâmetro *Access Permission* for igual a *Monitoring*, o último parâmetro será exibido no display ao remover a chave de fenda magnética.

Sempre no display serão exibidos dois parâmetros por vez, alternando entre o parâmetro configurado e o último parâmetro monitorado. Se você não deseja exibir os dois parâmetros ao mesmo tempo, basta optar por *None* quando configurar o LCD-II:

		×
LCD-I LCD-II LCD-III LCI	-IV LCD-V LCD-VI	Address Toggle
Display Block		
Block Type	None	_
Parameter Type/Index		•
Parameter Element	2	
Mnemonic	TAG	
Decimal Step	0,010	
Decimal Point Place	2	
Access Permission	Monitoring	
Alpha/Numerical	Mnemonic	
		Write Help

Figura 3.35 - Parâmetros para Configuração do Ajuste Local - Profibus View

elect Block Type	None		Write
elect/Set Parameter Type/Index	TAG	<u></u>	
et Mnemonic [TAG		
et Decimal Step	0.01		
et Decimal Point Place	2		
elect Access Permission	Monitoring	_	
elect Alpha/Numerical	Mnemonic	•	

Figura 3.36 - Parâmetros para Configuração do Ajuste Local - Simatic PDM

Display Block	D-1V LCD-V LCD-VI	Address Toggle
Block Type Parameter Type/Index Parameter Element Mnemonic Decimal Step	Analog Input Mode 2 Mode 0,010	<u>×</u>
Decimal Point Place Access Permission Alpha/Numerical	2 Monitoring Mnemonic	×
	Display Block Block Type Parameter Type/Index Parameter Element Mnemonic Decimal Step Decimal Point Place Access Permission Alpha/Numerical	LCD-I LCD-III LCD-IV LCD-V LCD-VI Display Block Block Type Analog Input Parameter Type/Index Mode Parameter Element 2 Mnemonic Mode Decimal Step 0,010 Decimal Point Place 2 Access Permission Monitoring Alpha/Numerical Mnemonic

Você pode selecionar o parâmetro *Mode Block* (Modo do bloco) no LCD. Neste caso é necessário selecionar o índice igual ao *Mode Block*:

Figura 3.37 - Parâmetros para Configuração do Ajuste Local - Profibus View

elect Block Type	Analog Input	▼ Write
elect/Set Parameter Type/Inde	x Mode Block	
Set Mnemonic	MODE	
Bet Decimal Step	0.25	
et Decimal Point Place	2	
elect Access Permission	Monitoring	
Relect Alpha/Numerical	Mnemonic	•

Figura 3.38- Parâmetros para Configuração do Ajuste Local - Simatic PDM

Programação usando Ajuste Local

O ajuste local é completamente configurado pelo Profibus View ou Simatic PDM. Escolha as melhores opções para ajustar a sua aplicação. Na fábrica, o transmissor é configurado com as opções para ajustar o trim inferior e superior, para monitorar a entrada, a saída do transdutor e configurar o tag.

Normalmente, o transmissor é configurado através da ferramenta de configuração, mas a funcionalidade do LCD permite uma ação fácil e rápida em certos parâmetros, já que não necessita da instalação das conexões da rede elétrica de comunicação. Através do ajuste local pode-se configurar: modo do bloco, monitoração da saída, visualização do tag e configuração dos parâmetros de sintonia.

Todos os equipamentos de campo da série 303 da Smar apresentam a mesma metodologia para manusear os recursos do transdutor do display. Logo, se o usuário aprender uma vez, ele é capaz de manusear todos os tipos de equipamento de campo da Smar.

Esta configuração de ajuste local é somente uma sugestão. O usuário pode escolher o seu método de configuração preferido via ferramenta de configuração, simplesmente configurando o bloco do display. O transmissor tem dois furos para acessar com a chave magnética localizada debaixo da placa de identificação e estes interruptores são ativados por uma chave magnética que habilita o ajuste dos parâmetros mais importantes dos blocos. Também habilita a pré-configuração da comunicação.

Para usufruir do acesso via ajuste local, fixe o jumper W1 no topo da placa principal e conecte o indicador digital no transmissor. Sem o indicador digital não é possível realizar o ajuste local.

Figura 3.41 – Passo 3 – TP303

Coloque a chave magnética no furo Z. Neste caso, como esta é, a primeira configuração, a opção mostrada no indicador é o TAG com seu correspondente mnemônico configurado pelo configurador. Caso contrário, a opção mostrada no indicador será uma das configurada na operação prioritária. Mantendo a chave inserida neste furo, o menu aiuste local será rotacionado.

Para calibrar o valor inferior

Para decrementar o valor inferior, coloque a chave magnética no furo Z para deslocar a indicação da seta para baixo, inserindo e mantendo a chave no furo S, é possível decrementar o valor inferior.

Figura 3.42 – Passo 4 – TP303

Para calibrar o valor inferior (LOWER), insira a chave magnética no furo S assim que LOWER for mostrado no indicador. Uma seta apontando para cima () incrementa o valor e uma seta apontando para baixo () decrementa o valor. Para incrementar o valor. Mantenha a chave inserida em S até ajustar o valor desejado.

Figura 3.43 – Passo 5 – TP303

Para decrementar o valor inferior, coloque a chave magnética no furo Z para deslocar a indicação da seta para baixo, inserindo e mantendo a chave no furo S, é possível decrementar o valor inferior.

Tabela de Pontos - Linearização

O sinal de saída segue uma curva determinada por 16 pontos livremente configuráveis.

	TABELA DE PONTOS - LINEARIZAÇÃO						
Pontos %	Valor atual (Saída do processo X(%))	Posição desejada do processo Y(%)					
1	0	0					
2	26,4	25	5 Pontos				
3	48,6	50	(Veja figura: Gráfico de posição do				
4	74,2	75	imã)				
5	100	100					
6	-	-					
			Não utilizados				
-							
-							
16	-	-					

Função Tabela (Linearização)

Dependendo da aplicação e conforme o processo, a saída do transmissor ou a PV é apresentada uma curva característica linear (posição, nível, abertura etc.). O Tp possui ainda o recuso para juste desta curva de saída linear, para que o valor em porcentagem possa ser linearizado, emprega-se uma tabela de 16 pontos no máximo e 2 pontos no mínimo. A saída é calculada através da interpolação destes pontos. O usuário pode configurar o número de pontos desejados.

Para configurar o recurso da tabela:

- O usuário deve escolher no item "função" a opção "tabela".
- Selecionar o número de pontos, conforme sua necessidade, de 2 a 16 pontos.
- Criar a tabela indicando na coluna "X" em (%) o valor da posição atual e na coluna "Y" em (%), o valor da posição desejada. Depois de criada a tabela enviar os pontos para o transmissor.
- Pronto, esta configurada.

GRÁFICO DE POSIÇÃO DO IMÂ

Exemplo:

NOTA: Se a tabela estiver habilitada haverá uma indicação no display com o ícone F(X).

Figura 3.45 - Gráfico de Posição do Imã

Diagnósticos Cíclicos

Pode-se verificar os diagnósticos ciclicamente através de leituras via mestre Profibus-DP classe 1, assim como, aciclicamente, via mestre classe 2. Os equipamentos Profibus-PA disponibilizam 04 bytes padrões via Physical Block (vide figura 3.46 e figura 3.47) e quando o bit mais significativo do 4º. Byte for "1", estenderá o diagnóstico em mais 6 bytes. Estes bytes de diagnósticos também podem ser monitorados via ferramentas acíclicas.

From Physical Block

Len of status bytes	Status Type	Physical Block Slot	Status Appears Disappears	Standard Diagnostic	Extended Diagnostic
08 - Standard Diag 0E - Ext Diag	FE	01	01 - Appears 02- Disappears	4 bytes	6 bytes veedor specific

When bit 55 (byte 4, MSB) is "1" the device has extended diagnost

Figura 3.46 – Diagnósticos Cíclicos

Figura 3.47 – Mapeamento dos Diagnósticos Cíclicos nos 4 bytes do Physical Block

Unit_Diag_bit está descrito no arquivo GSD do equipamento Profibus-PA.

A seguir vem parte da descrição de um arquivo GSD onde se tem os 4 bytes em detalhes:

Unit_Diag_Bit(16) = "Error appears" Unit_Diag_Bit(17) = "Error disappears" ;Byte 01 Unit_Diag_Bit(24) = "Hardware failure electronics" Unit_Diag_Bit(25) = "Not used 25" Unit_Diag_Bit(26) = "Not used 26" Unit_Diag_Bit(27) = "Not used 27" Unit_Diag_Bit(28) = "Memory error" Unit_Diag_Bit(29) = "Measurement failure" Unit_Diag_Bit(30) = "Device not initialized" Unit_Diag_Bit(31) = "Device initialization failed" ;Byte 02 Unit_Diag_Bit(32) = "Not used 32" Unit_Diag_Bit(33) = "Not used 33" Unit_Diag_Bit(34) = "Configuration invalid" Unit_Diag_Bit(35) = "Restart"

;----- Description of device related diagnosis: ------

Unit Diag Bit(36) = "Coldstart" Unit_Diag_Bit(37) = "Maintenance required" Unit_Diag_Bit(38) = "Not used 38" Unit_Diag_Bit(39) = "Ident_Number violation" :Bvte 03 Unit Diag Bit(40) = "Not used 40" Unit_Diag_Bit(41) = "Not used 41" Unit_Diag_Bit(42) = "Not used 42" Unit_Diag_Bit(43) = "Not used 43" Unit_Diag_Bit(44) = "Not used 44" Unit_Diag_Bit(45) = "Not used 45" Unit_Diag_Bit(46) = "Not used 46" Unit_Diag_Bit(47) = "Not used 47" ;byte 04 Unit_Diag_Bit(48) = "Not used 48" Unit_Diag_Bit(49) = "Not used 49" Unit_Diag_Bit(50) = "Not used 50" Unit Diag Bit(51) = "Not used 51" Unit Diag Bit(52) = "Not used 52" Unit Diag Bit(53) = "Not used 53" Unit_Diag_Bit(54) = "Not used 54" Unit_Diag_Bit(55) = "Extension Available" ;Byte 05 TRD Block & PHY Block Unit Diag Bit(56) = "Sensor Hall failure" Unit_Diag_Bit(57) = "Temperature Out of work range" Unit Diag Bit(58) = "Not used 58" Unit_Diag_Bit(59) = "Not Used 59" Unit Diag Bit(60) = "Calibration Error - Check XD ERROR parameter" Unit Diag Bit(61) = "Not used 61" Unit Diag Bit(62) = "Not Used 62" Unit_Diag_Bit(63) = "Device is writing lock" :byte 06 AI Block Unit Diag Bit(64) = "Simulation Active in Al Block" Unit_Diag_Bit(65) = "Fail Safe Active in Al Block" Unit_Diag_Bit(66) = "AI Block in Out of Service" Unit_Diag_Bit(67) = "AI Block Output out of High limit" Unit_Diag_Bit(68) = "AI Block Output out of Low limit" Unit_Diag_Bit(69) = "No assigned channel to AI Block" Unit_Diag_Bit(70) = "Not used 70" Unit_Diag_Bit(71) = "Not used 71" ;byte 07 TOT Block Unit_Diag_Bit(72) = "TOT Block in Out of Service" Unit_Diag_Bit(73) = "Totalization Out of High limit" Unit_Diag_Bit(74) = "Totalization Out of Low limit" Unit_Diag_Bit(75) = "No assigned channel to TOT Block" Unit_Diag_Bit(76) = "Not used 76" Unit_Diag_Bit(77) = "Not used 77" Unit_Diag_Bit(78) = "Not used 78" Unit_Diag_Bit(79) = "Not used 79" :byte 08 Unit Diag Bit(80) = "Not used 80" Unit Diag Bit(81) = "Not used 81" Unit_Diag_Bit(82) = "Not used 82" Unit_Diag_Bit(83) = "Not used 83" Unit_Diag_Bit(84) = "Not used 84" Unit_Diag_Bit(85) = "Not used 85" Unit_Diag_Bit(86) = "Not used 86" Unit_Diag_Bit(87) = "Not used 87"

;byte 09	
Unit_Diag_Bit(88)	= "Not used 88"
Unit_Diag_Bit(89)	= "Not used 89"
Unit_Diag_Bit(90)	= "Not used 90"
Unit_Diag_Bit(91)	= "Not used 91"
Unit_Diag_Bit(92)	= "Not used 92"
Unit_Diag_Bit(93)	= "Not used 93"
Unit_Diag_Bit(94)	= "Not used 94"
Unit_Diag_Bit(95)	= "Not used 95"
;byte 10	
Unit_Diag_Bit(96)	= "Not used 96"
Unit_Diag_Bit(97)	= "Not used 97"
Unit_Diag_Bit(98)	= "Not used 98"
Unit_Diag_Bit(99)	= "Not used 99"
Unit_Diag_Bit(100)) = "Not used 100'
Unit_Diag_Bit(101)) = "Not used 101'
Unit_Diag_Bit(102)) = "Not used 102'
Unit_Diag_Bit(103)) = "Not used 103'
• • •	

ΝΟΤΑ

Se o flag FIX estiver ativo no LCD, o TP303 está configurado para modo "Profile Specific".

Quando em modo "Manufacturer Specific", o Identifier Number é 0x0904. Uma vez alterado de "Profile Specific" para "Manufacturer Specific", deve-se esperar 5 segundos e desligar e ligar o equipamento para que o Identifier Number seja atualizado no nível de comunicação. Se o equipamento estiver em "Profile Specific" e com o arquivo GSD usando Identifier Number igual a 0x0904, haverá comunicação acíclica, isto com ferramentas baseadas em EDDL, FDT/DTM, mas não haverá comunicação cíclica com o mestre Profibus-DP.

PROCEDIMENTOS DE MANUTENÇÃO

Geral

NOTA Equipamentos instalados em Atmosferas Explosivas devem ser inspecionados conforme norma NBR/IEC60079-17.

Os transmissores de posição da Smar **TP303** são intensamente testados e inspecionados antes de serem enviados para o usuário. Apesar disso, foram projetados prevendo a possibilidade de reparos pelo usuário, caso isto se faça necessário.

Em geral, é recomendado que o usuário não faça reparos nas placas de circuito impresso. Em vez disso, deve-se manter conjuntos sobressalentes ou adquiri-los da **SMAR** quando necessário.

A tabela mostra as mensagens de erro e possíveis causas.

SINTOMA	POSSÍVEL CAUSA DO PROBLEMA
	Conexões do Transmissor Verifique a polaridade da fiação e a continuidade. Verifique por curto circuitos ou malhas aterradas. Verifique se o conector da fonte está conectado à placa principal. Verifique se a blindagem não está sendo usada como condutor. A blindagem deve ser aterrada somente em um terminal.
SEM COMUNICAÇÃO	 Fonte de Alimentação Verifique a saída da fonte. A tensão deve estar entre 9 - 32 VDC nos terminais do TP303. O ruído e o ripple devem estar entre os limites: a) 16 mV pico a pico de 7,8 a 39 KHz. b) 2 V pico a pico de 47 a 63 Hz para aplicações sem segurança intrínseca e 0,2 V para aplicações com segurança intrínseca. c) 1,6 V pico a pico de 3,9 MHz a 125 MHz.
	Conexão de Rede Verifique se a topologia está correta e se todos os equipamentos estão conectados em paralelo. Verifique se ambos os terminadores estão ok e posicionados corretamente. Verifique se as conexões dos acopladores estão ok e posicionadas corretamente. Verifique se os terminadores estão de acordo com as especificações. Verifique o comprimento do tronco e dos braços. Verifique o espaçamento entre os acopladores.
	Configuração de Rede Certifique-se que o endereco do equipamento está configurado corretamente.
	Falha do Circuito Eletrônico Verifique se não há defeitos na placa principal e substitua a placa por uma sobressalente.
	Conexões do Transmissor Verifique se não há curtos-circuitos, circuitos abertos ou problemas de aterramento. Verifique se o sensor está corretamente conectado ao bloco de terminais do TP303 .
LEITURA INCORRETA	<i>Ruído, Oscilação</i> Ajuste o damping. Verifique o aterramento da carcaça. Verifique se a blindagem da fiação entre o transmissor / painel está aterrada somente em um lado.
	Sensor Verifique operação do sensor; ele deve estar dentro de suas características. Verifique o tipo do sensor; ele deve ser do tipo configurado para o TP303 . Verifique se o processo está dentro da faixa do sensor e do TP303 .

Tabela 4.1 - Mensagens de Erros e Possíveis Causas

Se o problema não apresenta na tabela acima faça o que diz a nota abaixo.

ΝΟΤΑ

O Factory Init deve ser realizado como última opção de se recuperar o controle sobre o equipamento quando este apresentar algum problema relacionado aos blocos funcionais ou a comunicação. Esta operação só deve ser feita por pessoal técnico autorizado e com o processo em offline, uma vez que o equipamento será configurado com dados padrões e de fábrica.

Este procedimento reseta todas as configurações realizadas no equipamento, com exceção do endereço físico do equipamento e do parâmetro gsd identifier number selector. Após a sua realização todas as configurações pertinentes à aplicação devem ser efetuadas novamente.

Para esta operação usam-se duas chaves de fendas imantadas. No equipamento, retire o parafuso que fixa a plaqueta de identificação no topo de sua carcaça para ter acesso aos furos marcados pelas letras "S" e "Z". As operações a serem realizadas são:

- 1) Desligue o equipamento, insira as chaves e deixe-as nos furos (parte magnética nos furos);
- 2) Alimente o equipamento;
- Assim que o display mostrar Factory Init, retire as chaves e espere o símbolo "S" no canto superior direito do display apagar, indicando o fim da operação.

Esta operação irá trazer toda a configuração de fábrica eliminando, assim, os eventuais problemas que possam ocorrer com os blocos funcionais ou com a comunicação do equipamento.

Recomendações para Montagem de Equipamentos Aprovados com a Certificação IP66/68 W ("W" indica certificação para uso em atmosferas salinas)

Esta certificação é válida para os transmissores fabricados em Aço Inoxidável, aprovados com a certificação IPW66/68. A montagem de todo material externo do transmissor, tais como bujões, conexões etc., devem ser em ACO INOXIDÁVEL.

A conexão elétrica com rosca 1/2" - 14NPT deve ser selada. Recomenda-se um selante de silicone nãoendurecível.

NOTA

A certificação perderá sua validade caso o instrumento seja modificado ou inclua peças sobressalentes fornecidas por terceiros que não sejam representantes autorizados Smar.

Procedimento de Desmontagem

ATENÇÃO

Desligue a fonte de alimentação e a pressão de alimentação antes de desmontar o transmissor de posição.

Refira-se ao desenho da vista explodida do **TP303**.

ΝΟΤΑ

Os números indicados entre parênteses são referente a figura 4.3 - Vista Explodida.

Transdutor

Para remover o transdutor da carcaça eletrônica, deve-se desconectar as conexões elétricas (no lado que está marcado com "FIELD TERMINALS") e o conector da placa principal. Solte o parafuso sextavado (6) e cuidadosamente solte a carcaça eletrônica do transdutor, sem torcer o flat cable.

ATENÇÃO

As placas possuem componentes CMOS que podem ser danificados por descargas eletrostáticas. Observe os procedimentos corretos para manipular os componentes CMOS. Também é recomendado armazenar as placas de circuito em embalagens à prova de cargas eletrostáticas

ATENÇÃO

Para evitar danos ao equipamento, não gire a carcaça mais do que 270° a partir do fim de curso da rosca, sem desconectar o circuito eletrônico do sensor e da fonte de alimentação. Não se esqueça de soltar o parafuso de trava do sensor para rotacionar. Veja Figura 4.1.

Circuito Eletrônico

Para remover a placa do circuito (5) e do indicador (4), primeiro solte o parafuso de trava da tampa (6) do lado que não está marcado "Field Terminals", em seguida solte a tampa (1).

Figura 4.1 – Rotação Segura do Transdutor

Solte os dois parafusos (3) que prendem a placa do circuito principal e a do display. Puxe para fora o display e, em seguida, a placa principal (5).

Procedimento de Montagem

Não montar o transmissor de posição com a fonte de alimentação ligada.

Transdutor

Monte o transdutor à carcaça girando no sentido horário até o fim do curso. Em seguida gire-o no sentido anti-horário até acertar a frente da carcaça eletrônica com a frente do transdutor. Aperte o parafuso sextavado (6) para travar a carcaça ao transdutor.

ATENÇÃO

Circuito Eletrônico

Ligue o conector do transdutor e o conector da fonte de alimentação à placa principal (5). Conecte o display (4) na placa. A placa do display possibilita a montagem em quatro posições. A marca ▲, inscrita no topo do display, indica a posição correta para sua montagem.

Figura 4.2 – Posições de Montagem do Indicador Local

Fixe a placa principal **(5)** à carcaça **(8)** através dos parafusos **(3)**. Para finalizar, aperte a tampa **(1)**. O transmissor de posição está pronto para ser energizado e testado.

Intercambiabilidade

Atualizando o TP301 para TP303

O sensor e o invólucro do TP301 são exatamente os mesmos do **TP303**. Para transformar o TP301 em **TP303** basta modificar a placa do circuito. O display do TP301 versão 1.XX é o mesmo do **TP303**, por isso pode ser utilizado ao atualizar a placa do circuito.

Ao mudar o TP301 para **TP303** basta seguir o procedimento de substituição da placa principal descrito acima.

Para remover a placa do circuito (5), solte os dois parafusos (3) que seguram a placa.

Tome os devidos cuidados com as placas como mencionado anteriormente.

Puxe a placa principal do TP301 da carcaça e desconecte a fonte de alimentação e os conectores do sensor.

Coloque a placa do TP303 invertendo o procedimento de remoção do circuito do TP301.

Vista Explodida

Figura 4.3 – Vista Explodida

Acessórios e Produtos Relacionados

ACESSÓRIOS E PRODUTOS RELACIONADOS				
Código de Pedido	Descrição			
400-1176	Guia de teflon para imã linear			
400-1177	Guia de teflon para imã rotativo			
AssetView FDT	Ferramenta Gerencial de Equipamentos de Campo			
BC1	Interface Fieldbus/RS232			
BT302	Terminador			
DF47-17	Barreira de Segurança Intrínseca			
DF73	Controlador HSE/PROFIBUS DP			
DF95/DF97	Controlador PROFIBUS DP/PA			
FDI302	Interface de Equipamento de Campo			
PBI	Interface Profibus/USB			
ProfibusView	Software de parametrização de equipamentos PROFIBUS PA			
PS302/DF52	Fonte de Alimentação			
PSI302/DF53	Impedância para Fonte de Alimentação			
SD1	Ferramenta Magnética para Ajuste Local			

Relação das Peças Sobressalentes

RELAÇÃO DAS PEÇAS SOBRESSALENTES					
DESCRIÇÃO DAS PEÇAS		POSIÇÃO	CÓDIGO	CATEGORIA (NOTA 1)	
	. Alumínio	1	204-0103		
	. Aço Inox 316	1	204-0106		
ANEL DE VEDAÇÃO DA TAMPA (NOTA 3)	. Buna-N	2	204-0122	В	
	. Unidades com Indicador	3	304-0118		
PARAFUSU DA PLACA PRINCIPAL PARA CARCAÇA ALUMINIO	. Unidades sem Indicador	3	304-0117		
	. Unidades com Indicador	3	204-0118		
PARAFUSO DA PLACA PRINCIPAL PARA CARCAÇA AÇO INOX	. Unidades sem Indicador	3	204-0117		
INDICADOR DIGITAL		4	(NOTA 6)		
PLACA PRINCIPAL		5	(NOTA 6)	А	
	. Parafuso M4	6	204-0121		
PARAFUSO DE TRAVA DA CARCAÇA	. Parafuso sem cabeça M6	6	400-1121		
PARAFUSO DE TRAVA DA TAMPA		7	204-0120		
CARCAÇA (NOTA 2)		8	(NOTA 5)		
CAPA DE PROTEÇÃO DO AJUSTE LOCAL		9	204-0114		
PARAFUSO DA PLAQUETA DE IDENTIFICAÇÃO		10	204-0116		
ISOLADOR DA BORNEIRA		11	400-0058		
	. Carcaça em Alumínio	12	304-0119		
PARAFUSU DE FIXAÇÃO DO ISULADOR DA BORNEIRA	. Carcaça em Aço Inox 316	12	204-0119		
	. Alumínio	13	204-0102		
TAMPA SEM VISOR	. Aço Inox 316	13	204-0105		
PARAFUSO DE ATERRAMENTO EXTERNO		14	204-0124		
BUJÃO SEXTAVADO INTERNO	. 1/2" NPT Aço Carbono Bicromatizado BR-EX D	15	400-0808		
	. 1/2" NPT Aço Inox 304 BR-EX D	15	400-0809		
BUJÃO SEXTAVADO INTERNO	. 1/2" NPT Aço Carbono Bicromatizado	15	400-0583-11		
	. 1/2" NPT Aço Inox 304	15	400-0583-12		

	. M20 X 1.5 Aço Inox 316 BR-EX D	15	400-0810	
BUJAU SEATAVADU EATERINU	. PG13.5 Aço Inox 316	15	400-0811	
BUCHA DE RETENÇÃO	. 3/4" NPT Aço Inox 316 BR-EX D	15	400-0812	
PARAFUSO DA TAMPA DE LIGAÇÃO		16	400-0883	
	. Alumínio	16, 17, 18, 19	400-0884	
CONJUNTO DA TAMPA DE LIGAÇÃO	. Aço inox 316	16, 17, 18, 19	400-0885	
ANEL DE VEDAÇÃO, PESCOÇO (NOTA 3)	. Buna-N	17	204-0113	В
	. Alumínio	18	400-0074	
	. Aço Inox 316	18	400-0391	
PLACA ANALÓGICA		19	400-0637	
ANEL DE VEDAÇÃO DO BLOCO UNIÃO		20	400-0085	В
	. Alumínio	21	400-0386	
BLOCO UNIAO	. Aço Inox 316	21	400-0387	
	. Alumínio	22, 23, 24	400-0656	
CONJUNTO DA TAMPA DO SENSOR DE POSIÇÃO	. Aço Inox 316	22, 23, 24	400-0657	
SUPORTE DO SENSOR DE POSIÇÃO + SENSOR DE POSIÇÃO + CABO FLEXÍVEL		22	400-0090	
TAMPA DO SENSOR DE POSIÇÃO	. Alumínio	23	400-0089	
	. Aço Inox 316	23	400-0396	
PARAFUSO DA TAMPA DO SENSOR DE POSIÇÃO		24	400-0092	
CONJUNTO DA TAMPA DO SENSOR DE POSIÇÃO REMOTO	. Alumínio	25	400-0853	
(NOTA 4)	. Aço Inox 316	25	400-0854	
	. 5 M	26	400-0857	
CONJUNTO DE CABO + CONECTOR	. 10 M	26	400-0858	
	. 15 M	26	400-0859	
	. 20 M	26	400-0860	
	. Alumínio	27	400-0855	
CONJUNTO DA EXTENSÃO REMOTA	. Aço Inox 316	27	400-0856	
	. Alumínio	16 a 24	400-0038	
CONJUNTO DO TRANSDUTOR	. Aço Inox 316	16 a 24	400-0400	
	. Aço Carbono	-	400-0339	
SUPORTE DE FIXAÇÃO ("L" + BRAÇADEIRA "U" PARA TUBOS 2")	. Aço Inox 316	-	400-0340	
	. Linear até 50 mm	-	400-0035	
ÍMÃS	. Linear até 100 mm	-	400-0036	
	. Linear até 30 mm	-	400-0748	
	. Rotativo	-	400-0037	

ΝΟΤΑ

Nota 1: Na categoria A, recomenda-se manter em estoque um conjunto para cada 25 peças instaladas e na categoria B um conjunto para cada 50 peças instaladas.

Nota 2: Inclui isolador da borneira, parafusos da trava da tampa, do aterramento e do isolador da borneira; e plaqueta de identificação sem certificação.

Nota 3: Os anéis de vedação são empacotados com doze unidades.

Nota 4: Inclui tampa, Sensor de Posição com cabo chato e o conector para o cabo da extensão. Nota 5: Para especificar a carcaça, use a tabela CÓDIGO PARA PEDIDO DA CARCAÇA.

Nota 6: Acessar www.smar.com.br/pt/suporte, em suporte geral, procurar nota de compatibilidade e consulte o documento.

* Selecione a opção desejada.

Teste de isolamento da carcaça

- 1. Desenergizar o instrumento em campo, remover sua tampa traseira e desconectar todos os cabos de campo da borneira do transmissor, isolando-os com segurança.
- 2. Não é necessário remover a placa principal e display.
- 3. Jumpear (conectar) os terminais de alimentação (positivo e negativo) com cabo nu proveniente do megômetro.
- 4. Configurar o megômetro para escala 500 Vdc e verificar o isolamento entre a carcaça e o cabo nu que curto-circuita todos os terminais.

- 5. O valor obtido deverá ser maior ou igual a 2GΩ e o tempo de aplicação da tensão deve ser de no mínimo 1 segundo e no máximo 5 segundos.
- 6. Caso o valor obtido pelo megômetro estiver abaixo de 2GΩ, deve ser analisada a possibilidade de entrada de umidade no compartimento de conexão elétrica.
- 7. É possível soltar os dois parafusos que prendem a borneira à carcaça e fazer uma limpeza superficial e secar bem a superfície. Posteriormente, o isolamento pode ser testado novamente.
- 8. Se mesmo assim o teste de isolamento continuar mostrando que a isolação foi comprometida, a carcaça deve ser substituída e encaminhada à Nova Smar S.A. para análise e recuperação.

IMPORTANTE

a. Para instrumentos certificados Exd e Exi (Prova de Explosão e Intrinsecamente Seguro) as normas orientam a não fazer reparos em campo dos componentes eletrônicos da carcaça, apenas na Nova Smar S.A.

b. Em utilização normal, os componentes da carcaça não devem causar falhas que afetem o isolamento da carcaça. Por isto é importante avaliar se há vestígios de entrada de água na carcaça e, em caso positivo, uma avaliação nas instalações elétricas e nos anéis de vedação das tampas deve ser feita. A Nova Smar S.A. tem uma equipe pronta para apoiar a avaliação das instalações, caso seja necessário.

CARACTERÍSTICAS TÉCNICAS

Especificações Funcionais

Curso	Movimento linear: 3 - 100 mm.						
Curso	Movimento rotativo: 3	0° - 120)° âng	ulo de rota	ação.		
Sinal de Saída	PROFIBUS PA, somente digital e de acordo com IEC 1158-2 (H1): 31,25 kbit/s e modo de voltagem						
(Comunicação)	com alimentação pelo barramento.						
	Alimentação do barramento 9 – 32 Vdc.						
	Consumo de Corrente Quiescente: 12 mA.						
Fonto do Alimontosão	Impedância de Saída:						
Fonte de Alimentação	- Segurança não intrír	iseca de	e 7.8 l	KHz – 39 k	KHz deve	e ser	maior ou igual a 3 KΩ.
	- Segurança intrínseca	a (assur	nindo	uma barre	eira IS n	a fon	te de alimentação) de 7.8 KHz - 39 KHz
	deve ser maior ou igu	al [`] a 400	Ω.				
Indicador	Indicador digital (LCD)) de 4 ½	dígit	os numério	cos e 5 c	aract	teres alfanuméricos (Cristal líquido).
Certificações em							
Área Classificada	veja Apendice A.						
	Ambiente:	-40	а	85°C	(-40	а	185ºF).
	Armazenagem:	-40	а	90°C	(-40	а	194ºF).
Limites de Temperature	Indicador:	-10	а	75⁰C	(14	а	167°F) em operação;
Limites de Temperatura		-40	а	85°C	(-40	а	185°F) sem danos.
	Operação com	40	~	10500	(10	~	221°E)
	Sensor Remoto:	-40	а	105 C	(-40	а	221 F).
Tempo para início de	Aprovime demonte 10	ممرسمط	~~				
operação	Aproximadamente 10	seguna	0S.				
Configuração	A configuração básica	ı pode s	er fei	ta usando	chave d	e fen	da magnética se o equipamento possuir
Comgulação	display. A configuraçã	o comp	leta é	possível u	isando u	m co	nfigurador remoto (Ex.: Simatic PDM).
Limites de Umidade	0 a 100 % RH.						

Especificações de Desempenho

Condições de referência: faixa começando no zero, temperatura 25ºC (77ºF), fonte de alimentação 24 Vdc.

Precisão	≤ 0,2% Fundo de Escala. Os efeitos de linearidade, histerese e repetibilidade estão incluídos. (NOTA: Valor válido somente para quando usado com a Tabela de Pontos especificada neste manual).							
Resolução	≤ 0,1 % do fundo de escala							
Repetibilidade	≤ 0,5 % do fundo de escala							
Hysterese	≤ 0,2 % do fundo de escala							
Estabilidade	± 0,1% do fundo de escala durante 12 anos.							
Efeito da Temperatura	± 0,8% / 20°C do fundo de escala.							
Efeito da Fonte de Alimentação	± 0,005% do fundo de escala calibrado por volt.							
Efeito da interferência eletromagnética	Projetado para atender a Diretiva Europeia - Diretiva EMC 2004/108/EC.							

Especificações Físicas

Hardware	Físico: de acordo com IEC 61158-2 e conforme o modelo FISCO.							
Conexões Elétricas	1/2 - 14 NPT, PG 13.5, ou M20 x 1.5.							
Material de Construção	Alumínio injetado com baixo teor de cobre com pintura poliéster ou carcaça de aço inox 316 com anéis de Buna-N na tampa.							
Suporte de Montagem	Aço carbônico bicromatizado com pintura de poliéster ou aço inox 316.							
Placa de Identificação	Aço Inox 316.							
Pesos Aproximados	 TP: 1,5 kg em Alumínio, sem suporte de montagem; 3,3 kg em Aço Inox, sem suporte de montagem. Sensor remoto: 0,58 kg em Alumínio; 1,5 kg em Aço Inox. Cabo e conectores do sensor remoto: 0,045 kg/m de cabo; 0,05 kg para cada conector. 							

Código de Pedido

MODELO	TRAN	NSMISS	OR DE POSIÇ	ÃO									
TP303	PROF	ROFIBUS-PA											
	COD.	D. Indicador Local											
	0	Sem in	Sem indicador digital Com indicador digital										
	1	Com ir											
		COD. Suporte de Fixação											
		0	 Sem suporte "L" + braçadeira "U" para tubos 2" em aço carbono. (3) "L" + braçadeira "U" para tubos 2" em aço inox. (3) 										
		1											
		2											
		3	VDI/VDE NAMU	R - rotativo	em aço	carbono.							
		4	VDI/VDE NAMU	R - rotativo	em aço	inox.							
	7 "L"+ braçadeira "U" para tubos 2" em aço carbono. Acessório: Al 316. (3)												
			COD. Cone	xao Eletr	ca					2	4/01 4.4.1		
			0 1/2" - 1							3	1/2" - 14 [NPT X 1/2 BSP (AI 316) - com ad: -	aptador
			1 1/2 - 1 2 1/2" 1			(AI 3 10) -	com ada	ipiador		A			
				Tipo do		(AIS 10) -	com aua	ipiauoi		D	PG 13.51		
			1	Rotativa	Atuat								
			5	Linear - (urso at	50 mm							
			7	Linear - (urso at	5 00 mm							
			Δ	Linear - o	urso at	4 30 mm							
				OPCÕE	S ESP	ECIAIS	(1)						
				COD.	Carca	ca	(-)						
				H0	Em Alu	mínio (IP/	TYPE)			H2	Alumínio p	ara atmosfera salina (IPW/TYPE	X)
				H1	Em Aço	o Inox 316	6 (IP/TYF	PE)		H4	Alumínio C	Copper Free (IPW/TYPE X)	
					COD.	Plaque	ta de lo	lentifica	ição				
					11	FM: XP,	IS, NI, D)			15	CEPEL: Ex-d, Ex-ia, IP	
					13	CSA: XF	P, IS, NI,	DI			16	Sem certificação	
					14	EXAM (I	DMT): Ex	k-ia, IP			IJ	NEMKO - Ex-d	
						COD.	Pintur	a					
						P0	Cinza M	Munsell N	6.5				
						P3	Polyes	ter Preto					
						Pð	Sem Pl	ntura	Deee Enévi	Distur	o Eletrestáti		
							AZUI SE	Plaque	base Epoxi -	Finitur		ca	
								Plaquet					
	11 Plaqueta de TAG sem inscrição												
							.12	Plaquet	a de TAG cont	forme i	notas		
							1	COD.	Montagem	do S	ensor (2)		
	R0 Montagem Integral												
		R1 Sensor remoto com cabo de 5 metros											
			R2 Sensor remoto com cabo de 10 metros										
		R3 Sensor remoto com cabo de 15 metros											
		R4 Sensor remoto com cabo de 20 metros											
									COD. Car	racter	ísticas Té	cnicas	
									ZZ Ver	Notas			
TP303 -	1	0	- 0 1	*	•	*	*	*	*			MODELO TIPICO	
								NOTA					
1) Deixe e	m brar	nco para	a nenhum item o	opcional.									
2) Consult	e-nos	para ap	licaçoes em áre	eas classif	icadas								

3) O suporte do imã **não** é fornecido junto com o TP.

INFORMAÇÕES SOBRE CERTIFICAÇÕES

Informações sobre Diretivas Europeias

Consultar www.smar.com.br para declarações de Conformidade EC e certificados.

Representante autorizado na comunidade europeia

Smar Europe BV De Oude Wereld 116 2408 TM Alphen aan den Rijn Netherlands

Diretiva ATEX 2014/34//EU – "Equipamentos para Atmosferas Explosivas "

O certificado de tipo EC é realizado pelo DNV Product Assurance AS (NB 2460) e DEKRA Testing and Certification GmbH (NB 0158).

O organismo de certificação que monitora a fabricação e realiza o QAN (Notificação de Garantia da Qualidade) é a UL International Demko AS (NB 0539).

Diretiva LVD 2014/35/EU - "Baixa Tensão"

De acordo com a LVD anexo II, os equipamentos elétricos certificados para uso em Atmosferas Explosivas, estão fora do escopo desta diretiva.

De acordo com a norma IEC: IEC 61010-1 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements.

Diretiva ROHS 2011/65/EU - "Restrição do uso de certas substâncias perigosas em equipamentos elétricos e eletrônicos"

Para a avaliação dos produtos a seguinte norma foi consultada: EN IEC 63000.

Diretiva EMC 2014/30/EU - "Compatibilidade Eletromagnética"

Para avaliação do produto a norma IEC61326-1 foi consultada e para estar de acordo com a diretiva de EMC, a instalação deve seguir as seguintes condições especiais: Utilize um cabo blindado de par trançado para alimentar o equipamento e a fiação do sinal.

Mantenha a proteção isolada do lado do equipamento, conectando o outro lado ao terra.

Informações Gerais sobre Áreas Classificadas

Normas Ex:

IEC 60079-0 Requisitos Gerais

IEC 60079-1 Proteção de equipamento por invólucro à prova de explosão "d"

IEC 60079-7 Proteção de equipamento por segurança aumentada "e"

IEC 60079-11 Proteção de equipamento por segurança intrínseca "i"

IEC 60079-18 Proteção de equipamento por encapsulamento "m"

IEC 60079-26 Equipamentos com elementos de separação ou níveis de proteção combinados

IEC 60079-31 Proteção de equipamento contra ignição de poeira por invólucros "t"

IEC 60529 Graus de proteção providos por invólucros (Códigos IP)

IEC 60079-10 Classificação de áreas - Atmosferas explosivas de gás

IEC 60079-14 Projeto, seleção e montagem de instalações elétricas

IEC 60079-17 Inspeção e manutenção de instalações elétricas

IEC 60079-19 Reparo, revisão e recuperação de equipamentos

ISO/IEC 80079-34 Aplicação de sistemas de gestão da qualidade para a fabricação de produtos "Ex"

Atenção:

Explosões podem resultar em morte ou lesões graves, além de prejuízo financeiro.

A instalação deste equipamento em atmosferas explosivas deve estar de acordo com as normas nacionais e com o tipo de proteção. Antes de fazer a instalação verifique se os parâmetros do certificado estão de acordo com a classificação da área.

Manutenção e Reparo

A modificação do equipamento ou troca de partes fornecidas por qualquer fornecedor não autorizado pela Smar é proibida e invalidará a certificação.

Plaqueta de marcação

O equipamento é marcado com opções de tipos de proteção. A certificação é válida apenas quando o tipo de proteção é indicado pelo usuário. Quando um tipo de proteção está instalado, não o reinstalar usando quaisquer outros tipos de proteção.

Aplicações Segurança Intrínseca/Não Acendível

Ligue o equipamento com o tipo de proteção "Segurança intrínseca" apenas a um circuito

intrinsecamente seguro. Se o equipamento já tiver sido utilizado em circuitos não intrinsecamente

seguros ou se as especificações elétricas não tiverem sido respeitadas, a segurança do equipamento deixa de estar garantida para instalações de "Segurança Intrínseca".

Em atmosferas explosivas com requisitos de segurança intrínseca ou não acendível, os parâmetros de entrada do circuito e os procedimentos de instalação aplicáveis devem ser observados.

O equipamento deve ser conectado a uma barreira de segurança intrínseca adequada. Verifique os parâmetros intrinsecamente seguros envolvendo a barreira e o equipamento incluindo cabos e conexões. O aterramento do barramento dos instrumentos associados deve ser isolado dos painéis e suportes das carcaças. Cabo blindado é opcional, quando usar cabo blindado, isolar a extremidade não aterrada do cabo.

A capacitância e a indutância do cabo mais Ci e Li devem ser menores que Co e Lo do equipamento associado. É recomendado não remover a tampa do invólucro quando energizado.

Aplicações a Prova de Explosão/Prova de Chamas

Utilizar apenas conectores, adaptadores e prensa cabos certificados a prova de explosão/prova de chamas. As entradas das conexões elétricas devem ser conectadas através de conduites com unidades seladoras ou fechadas utilizando prensa cabo ou bujão metálicos com no mínimo IP66. Não remover a tampa do invólucro guando energizado.

Invólucro

A instalação do sensor e invólucro em atmosferas explosivas deve ter no mínimo 6 voltas de rosca completas. A tampa deve ser apertada com no mínimo 8 voltas de rosca para evitar a penetração de umidade ou gases corrosivos até que encoste no invólucro. Então, aperte mais 1/3 de volta (120º) para garantir a vedação. Trave as tampas utilizando o parafuso de travamento.

O invólucro contém alumínio e é considerado um risco potencial de ignição por impacto ou fricção. Deve-se tomar cuidado durante a instalação e uso para evitar impacto ou fricção.

Grau de Proteção do Invólucro (IP)

IPx8: o segundo numeral significa imerso continuamente na água em condição especial definida como 10m por um período de 24 horas. (Ref: IEC60529).

IPW/TypeX: a letra suplementar W ou X significa condição especial definida como testado em ambiente salino em solução saturada a 5% de NaCl p/p por um período de 200 horas a 35°C.

Para aplicações de invólucros com IP/IPW/TypeX, todas as roscas NPT devem aplicar vedante a prova d'agua apropriado (vedante de silicone não endurecível é recomendado).

Certificações para Áreas Classificadas

FM Approvals

FM 3010145 / FM 3007267 IS Class I, II, III Division 1, Groups A, B, C and D, E, F, G XP Class I, Division 1, Groups A, B, C, D DIP Class II, III Division 1, Groups E, F, G NI Class I, Division 2, Groups A, B, C, D T4; Ta = -25° C < Ta < 60° C; Type 4, 4X

Entity Parameters Fieldbus Power Supply Input (report 3015629): Vmax = 24 Vdc, Imax = 250 mA, Pi = 1.2 W, Ci = 5 nF, Li = 12 uH Vmax = 16 Vdc, Imax = 250 mA, Pi = 2 W, Ci = 5 nF, Li = 12 uH

Drawings 102A-0605, 102A-1238, 102A-1351, 102A-1963, 102A-1964

ATEX DNV

Explosion Proof (PRESAFE 21 ATEX 17657X) Il 2G Ex db IIC T6 Gb Ta -20 °C to +60 °C Options: IP66/68W or IP66/68

Special Conditions for Safe Use ATEX and IECEx certified cable gland to be used. Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 3 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2018 General Requirements EN 60079-1:2014 Flameproof Enclosures "d"

Drawings 102A-1452, 102A-1508

IECEx DNV

Explosion Proof (IECEx PRE 21.0015X) Ex db IIC T6 Gb Ta -20 °C to +60 °C Options: IP66/68W or IP66/68

Special Conditions for Safe Use ATEX and IECEx certified cable gland to be used. Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 3 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: IEC 60079-0:2017 General Requirements IEC 60079-1:2014-06 Equipment protection by flameproof enclosures "d"

Drawings 102A2169, 102A2170

ATEX DEKRA

Intrinsic Safety (DMT 00 ATEX E 086) I M2 Ex ia I Mb II 2G Ex ia IIC T4/T5/T6 Gb

Supply circuit for the connection to an intrinsically safe fieldbus circuit: Ui = 24 Vdc, Ii = 380 mA, Pi = 5.32 W, Ci ≤ 5 nF, Li = Neg Parameters of the supply circuit comply with FISCO model according to Annex G EN 60079-11:2012, replacing EN 60079:2008.

Ambient Temperature: $-40^{\circ}C \le Ta \le +60^{\circ}C (T4)$ $-40^{\circ}C \le Ta \le +50^{\circ}C (T5)$ $-40^{\circ}C \le Ta \le +40^{\circ}C (T6)$ The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2012 + A11:2013 General Requirements EN 60079-11:2012 Intrinsic Safety "i"

Drawings 102A-1452, 102A-1508, 102A-1584, 102A-1585

INMETRO NCC

Segurança Intrínseca (NCC 24.0156X) Ex ia IIC T* Ga Ex ia IIIC T* Da Ui = 30 V Ii = 380 mA Pi = 5,32 W Ci = 5,0 nF Li = desp Tamb: -20 °C a +65 °C para T4 ou T₂₀₀135°C Tamb: -20 °C a +50 °C para T5 ou T₂₀₀100°C IP66W/IP68W

Prova de Explosão (NCC 24.0146) Ex db IIC T6 Gb Ex tb IIIC T85 °C Db Tamb: -20 °C a +40 °C IP66W/IP68W

Observações:

O número do certificado é finalizado pela letra "X": Indicar que para a versão do Transmissor de Posição, Intrinsecamente Seguro, modelos TP290, TP301, TP302 e TP303 equipado com invólucro fabricado em liga de alumínio, somente pode ser instalado em "Zona 0", se durante a instalação for excluído o risco de ocorrer impacto ou fricção entre o invólucro e peças de ferro/aço.

O produto adicionalmente marcado com a letra suplementar "W" indica que o equipamento foi ensaiado em uma solução saturada a 5% de NaCl p/p, à 35 °C, pelo tempo de 200 h e foi aprovado para uso em atmosferas salinas, condicionado à utilização de acessórios de instalação no mesmo material do equipamento e de bujões de aço inoxidável ASTM-A240, para fechamento das entradas roscadas não utilizadas.

Os planos de pintura P1 são permitidos apenas para equipamento fornecido com plaqueta de identificação com marcação para grupo de gás IIB.

O grau de proteção IP68 só é garantido se nas entradas roscadas de ½" NPT for utilizado vedante não endurecível à base de silicone.

O segundo numeral oito indica que o equipamento foi ensaiado para uma condição de submersão de dez metros por vinte e quatro horas. O acessório deve ser instalado em equipamentos com grau de proteção equivalente.

É responsabilidade do fabricante assegurar que todos os transformadores da placa analógica tenham sido submetidos com sucesso aos ensaios de rotina de 1500 V durante um minuto.

Este certificado é válido apenas para os produtos dos modelos avaliados. Qualquer modificação nos projetos, bem como a utilização de componentes ou materiais diferentes daqueles definidos pela documentação descritiva dos produtos, sem a prévia autorização, invalidará este certificado.

As atividades de instalação, inspeção, manutenção, reparo, revisão e recuperação dos equipamentos são de responsabilidade dos usuários e devem ser executadas de acordo com os requisitos das normas técnicas vigentes e com as recomendações do fabricante.

Normas Aplicáveis:

ABNT NBR IEC 60079-0:2020 Atmosferas explosivas - Parte 0: Equipamentos - Requisitos gerais

ABNT NBR IEC 60079-1:2016 Atmosferas explosivas - Parte 1: Proteção de equipamento por invólucro à prova de explosão "d"

ABNT NBR IEC 60079-11:2013 Atmosferas explosivas - Parte 11: Proteção de equipamento por segurança intrínseca "i"

ABNT NBR IEC 60079-26:2022 Atmosferas explosivas - Parte 26: Equipamentos com elementos de separação ou níveis de proteção combinados

ABNT NBR IEC 60079-31:2022 Atmosferas explosivas - Parte 31: Proteção de equipamentos contra ignição de poeira por invólucros "t"

ABNT NBR IEC 60529:2017 Graus de proteção providos por invólucros (Código IP)

Desenhos 102A1379, 102A1307, 102A2068, 102A2067, 102A2099

Plaquetas de Identificação

FM Approvals

TP303 - Informações Sobre Certificações

FM Approvals

Apêndice B

		FSR - Formulário para Solicitação de Revisão									
sm	ar	Transmissor de Posição TP									
				DADC	DS GER	AIS					
Modelo:	TP290()) TP302())	/ersão do Firmware: /ersão do Firmware:				TP301 (TP303 () Versão do) Versão do	Firmware: Firmware:			
Nº de Série:					N⁰ do	Sensor:					
TAG: Sensor de											
Posição Remoto?	Sim()		Não()								
Atuação:	Rotativa ()		Linear ()								
Curso:	30 mm ()		50 mm()			100 mm ()		Outro:		mm	
Configuração:	Chave Magn	ética()	Palm ()	Psion ()	PC ()	Software	:	_ Versão):	
	DADOS DA INSTALAÇÂO										
Tipo:	Válvula + A	Atuador ()		Outro:							
Tamanho:											
Curso:											
Fabricante:											
Modelo:											
DADOS DO PROCESSO											
Classificação o Área/Risco	da _{Não} Classi	ficada ()	Química ()	Explosi	/a()	Outra:				
Tipos de Interferência	Vibração ()	Temperati	ura()	Eletrom	agnética ()) Outras: _				
			DES	CRIÇÃO	DA OCO	DRRÊNCIA	A				
	SUGESTÃO DE SERVIÇO										
Ajuste ()		Limpeza	()	Ма	anutenção	Preventiva	()	At	ualização / l	Jpgrade ()	
Outro:											
				DAD <u>OS I</u>	DO EMIT	ENTE					
Empresa:											
Contato:											
Identificação:											
Setor:											
Telefone:								Ramal: _			
E-mail:								Data:	/	_/	
Verifique os c	lados para em	nissão da Not	ta Fiscal de R	etorno no -	Termo de	Garantia di	sponível em	https://www	w.smar.com	.br/pt/suporte	

Retorno de Materiais

Caso seja necessário retornar o material para a SMAR, deve-se verificar no Termo de Garantia que está disponível em (<u>https://www.smar.com.br/pt/suporte</u>) as instruções de envio.

Para maior facilidade na análise e solução do problema, o material enviado deve incluir, em anexo, o Formulário de Solicitação de Revisão (FSR), devidamente preenchido, descrevendo detalhes sobre a falha observada no campo e sob quais circunstâncias. Outros dados, como local de instalação, tipo de medida efetuada e condições do processo, são importantes para uma avaliação mais rápida. O FSR encontra-se disponível no Apêndice B.

Retornos ou revisões em equipamentos fora da garantia devem ser acompanhados de uma ordem de pedido de compra ou solicitação de orçamento.