

MÓDULOS DE E/S REDUNDANTES

- Aumenta a disponibilidade do sistema e a segurança dos processos industriais
- Permite que sinais de entradas e saídas convencionais possam ser configurados e instalados em modo redundante
- Disponibilidade garantida, sem sobressaltos
- Baixo consumo
- Racks sem componentes ativos

Para atender os requisitos de tolerância a falhas, disponibilidade do sistema e segurança nos processos industriais, os controladores da linha DFI302 trabalham com a estratégia de redundância Hot Standby, em que todos os níveis, incluindo sinais de entradas e saídas convencionais, possam ser configurados e instalados em modo redundante.

Nesta estratégia, os controladores Primário e Secundário são conectados a um conjunto de scanners de E/S redundantes, que são dedicados para ler e escrever nos cartões de E/S. O caminho completo do sensor à estação de operação é totalmente redundante. Em caso de uma falha, o usuário será alertado e a disponibilidade será garantida sem sobressaltos.

Os seguintes componentes são necessários para construir um sistema de E/S redundante no DFI302.

Racks e Acessórios		
DF106	Rack Mestre - 6 slots para redundância de E/S	
DF110-1	Rack Escravo - 10 slots para redundância de E/S - Blocos terminais (borneiras)	
DF110-2	Rack Escravo - 10 slots para redundância de E/S - Cabeamento via interfaces	
DF109	Cabo de derivação (0,40m)	
DF119	Cabo principal (1,0m) para DF106-DF109 ou DF106-DF110	
Scanners		
DF107	Scanner Mestre para redundância de E/S	
DF108	Scanner Escravo para redundância de E/S	
Módulos de E/S		
DF111	1 Grupo de 16 Entradas Digitais Redundantes 24 Vdc - Fonte	
DF112	1 Grupo de 16 Saídas Digitais Redundantes 24 Vdc - Dreno	
DF113	1 Grupo de 8 Entradas Analógicas de Corrente Redundantes	
DF114	1 Grupo de 8 Saídas Analógicas de Corrente Redundantes	

Os seguintes componentes podem complementar o sistema de redundância de E/S do DFI302, R-Series.

Código	Descrição
DF87	Fonte de Alimentação para Backplane 20-30Vdc (5A, diagnóstico avançado)
DF0-R	Módulo cego para slots vazios
ITF-CR-10 ITF-CR-15 ITF-CR-20 ITF-CR-25 ITF-CR-30 ITF-CR-35 ITF-CR-40 ITF-CR-45 ITF-CR-50	Cabos para interfaces (1 m a 5 m)
ITF-DIG	Painel de interfaces passivo para módulo de 16 entradas e/ou saídas digitais - DC Obs. Os componentes ativos devem ser conectados externamente
ITF-AN-IOR	Painel de interfaces para módulo de 8 entradas e/ou saídas analógicas Obs. Exclusivo para R-Series

Para ter um verdadeiro sistema redundante de E/S convencionais, todas as partes e caminhos devem ser redundantes. A topologia do hardware para segmentos redundantes de entradas e saídas baseada nos controladores da linha DFI302 pode ser vista na figura seguinte. O sistema suporta até 16 pares de módulos de E/S R-Series. Isto significa 128 valores de E/S analógicos ou 256 discretos, ou uma mistura deles.

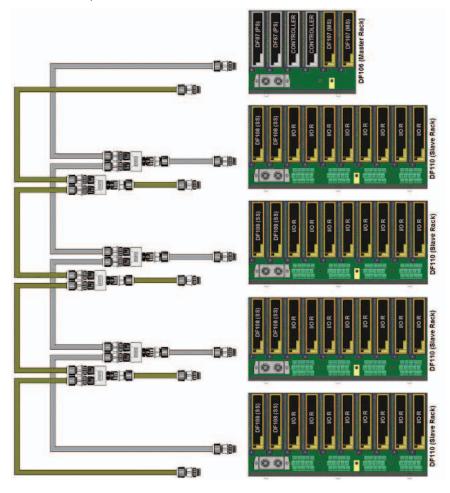
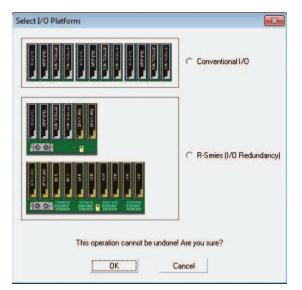



Figura - Visão geral do sistema de E/S redundante

Na ferramenta para configuração de lógicas do SYSTEM302, LogicView for FFB, selecione a opção R-Series (I/O Redundancy) durante a fase de configuração do hardware, e depois nenhuma configuração extra é necessária, uma vez que, a redundância de E/S é totalmente transparente sob a perspectiva do controle lógico.

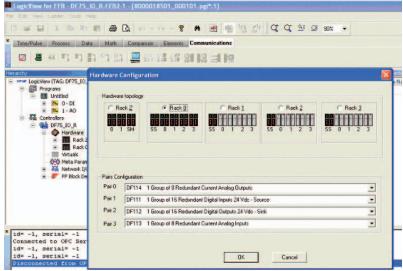


Figura - Configurando os módulos de E/S no LogicView for FFB

Cada par de módulos de E/S redundante verifica as condições um do outro, trabalhando de maneira autônoma, independente do scan do controlador e garante o chaveamento em menos de 100 microssegundos. No caso de falha do módulo de E/S primário, o módulo secundário assume o controle assegurando que os instrumentos de campo digitais permaneçam alimentados e o processo sem distúrbios.

Nenhum ponto de falha existe nesta arquitetura, o que significa que qualquer falha de hardware é coberta por um segundo hardware trabalhando de forma hot standby. Durante a operação, cada módulo de E/S tem uma referência interna de alta precisão que é usada pelos cartões de E/S analógicos para autodiagnóstico. A saída do cartão de E/S tem um circuito de realimentação digital para assegurar que sua saída está casada com a requisição do controlador principal.

Os scanners continuamente medem as condições de cada módulo de E/S para atualizar os controladores principais. Estes podem usar os status dos módulos de E/S no controle lógico como intertravamento de segurança e fornecer a mesma riqueza de informações às estações de IHM.

O status do diagnóstico do sistema completo está disponível, como parâmetros OPC e Simple Network Management Protocol (SNMP), para estações de IHM através de seus respectivos servidores.

Quando a manutenção é necessária, o sistema permite hot swap dos módulos, incluindo fontes de alimentação, controladores, scanners e módulos de E/S.

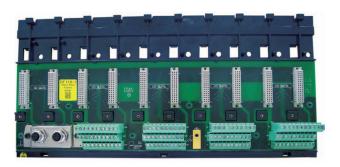
Os racks foram construídos para evitar qualquer tipo de manutenção. Nenhum componente ativo está montado no rack.

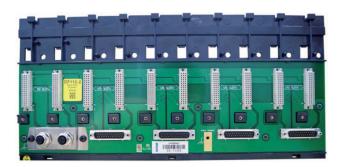
Especificações Técnicas

Racks

DF106 - Rack Mestre

O rack mestre (DF106) foi construído para evitar qualquer tipo de manutenção. Nenhum componente ativo está montado no rack. É possível conectar um par de fontes de alimentação redundantes, um par de controladores redundantes e um par de scanners mestres redundantes.




DF110 - Rack Escravo

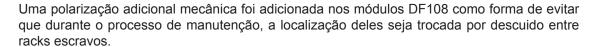
O rack escravo (DF110) foi construído para evitar qualquer tipo de manutenção. Nenhum componente ativo está montado neste rack. É possível conectar um par de scanners escravos redundantes e até quatro pares de módulos de E/S redundantes por rack escravo. Cada rack mestre suporta até quatro racks escravos.

Dois modelos de DF110 estão disponíveis:

- DF110-1 (Blocos terminais)
- DF110-2 (Cabeamento via interfaces)

Scanners

DF107 - Scanner Mestre


Além de fontes de alimentação e controladores redundantes, o Scanner Mestre (DF107) tem que suportar E/S convencionais de maneira redundante. Conectado ao rack passivo (DF106), estes scanners mestres garantirão acesso a até quatro racks de E/S redundantes (DF110).

DF108 - Scanner Escravo

Usando dois caminhos, através dos cabos DF109 e DF119, o par de scanners escravos (DF108) é conectado aos scanners mestres (DF107), garantindo assim acesso em tempo real a até 16 pares de módulos de E/S.

Até 4 DF110-x (racks escravos) podem ser utilizados no sistema R-Series e o endereçamento de cada rack escravo é ajustado internamente nos módulos DF108 (scanners escravos) através de DIP switches. Necessariamente o par de DF108 localizado no mesmo rack deve ter o mesmo endereço.

Módulos de Entrada e Saída Redundantes

Estes módulos são projetados para serem usados junto com o rack escravo (DF110), suportando redundância, hot swap e diagnóstico.

DF111 - Módulo de Entradas Digitais Redundante - DC (Fonte)

Este módulo fornece 16 entradas digitais (DC do tipo FONTE) e as converte em sinais lógicos Verdadeiro (ON) ou Falso (OFF). O módulo tem um grupo opticamente isolado do IMB.

Arquitetura		
Número de Entradas	16	
Número de Grupos	1	
Número de Entradas por Grupo	16	

Isolação estado de la companya de l		
Isolação Óptica entre o Grupo e o IMB	5000 Vrms	

Potência Interna		
Fornecida pelo Barramento IMB	5 Vdc	
Consumo Máximo	80 mA	

Potência Externa		
Fonte de Alimentação (VEXT)	20 - 30 Vdc	
Consumo Típico por Módulo	160 mA @ 24Vdc e todos os canais acionados (ON)	

Entradas ent		
Faixa de Tensão para Nível Lógico "1" (ON)	0 – 5 Vdc @ Zcarga < 200 Ω	
Faixa de Tensão para Nível Lógico "0" (OFF)	20 – 30 Vdc @ Zcarga >10 KΩ	
Corrente Típica por Ponto	8 mA @ 24 Vdc	

Potência Dissipada	
Típica por Módulo	4,24 W @ 24 Vdc e todos os canais acionados (ON)

Temperatura	
Operação	0 °C a 60 °C (32 °F a 140 °F)

Dimensões	
Dimensões (W x D x H)	39,9 x 137,0 x 141,5mm 1,57 x 5,39 x 5,57 pol

DF112 - Módulo de Saídas Digitais Redundante - DC (Dreno)Este módulo fornece 16 saídas digitais (DC do tipo DRENO) capazes de conduzir cargas com até 100 mA por saída. O módulo tem um grupo opticamente isolado do IMB.

Arquitetura		
Número de Saídas	16	
Número de Grupos	1	
Número de Saídas por Grupo	16	

Isolação	
Isolação Óptica entre o Grupo e o IMB	5000 Vrms

Potência Interna	
Fornecida pelo Barramento IMB	5 Vdc
Consumo Máximo	80 mA

Potência Externa		
Fonte de Alimentação (VEXT)	20 - 30 Vdc	
Consumo Típico por Módulo	180 mA @ 24Vdc e todos os canais acionados (ON)	

Saídas Saída		
Tensão de Chaveamento Máxima	30 Vdc	
Corrente Máxima por Saída	100 mA	
Indicador Lógico ON quando estiver conduzindo		

Potência Dissipada		
Típica por Módulo	4,72 W @ 24 Vdc e todos os canais acionados (ON)	

Temperatura Temperatura	
Operação	0 °C a 60 °C (32 °F a 140 °F)

Dimensões	
Dimensões (W x D x H)	39,9 x 137,0 x 141,5mm 1,57 x 5,39 x 5,57 pol

DF113 - Módulo De Entradas Analógicas Redundante - Corrente

Este módulo fornece 8 entradas analógicas de corrente. As entradas são individualmente configuradas para ler 4 a 20 mA ou 0 a 20 mA. O módulo tem um grupo opticamente isolado do IMB.

Arquitetura		
Número de Entradas	8	
Número de Grupos	1	
Número de Entradas por Grupo	8	

Isolação e de la companya de la com	
Isolação Óptica entre o Grupo e o IMB	5000 Vrms

Potência Interna	
Fornecida pelo Barramento IMB	5 Vdc
Consumo Máximo	80 mA

Potência Externa		
Fonte de Alimentação (VEXT)	20 - 30 Vdc	
Consumo Típico por Módulo	60 mA @ 24Vdc e 20 mA em todos os canais	

Entradas en la companya de la compa		
Tipo das Entradas	Terminação Simples (1 terra)	
Impedância Típica por Ponto	250 Ω	

Faixa das Entradas	Faixa 1	Faixa 2
Corrente de Entrada	4 mA a 20 mA	0 mA a 20 mA

Conversão A/D	
Resolução	16 bits

Potência Dissipada		
Típica por Módulo	2,78 W @ 24 Vdc e 20 mA em todos os canais	

Temperatura Temperatura		
Operação	0 °C a 60 °C (32 °F a 140 °F)	

Dimensões	
Dimensões (W x D x H)	39,9 x 137,0 x 141,5mm 1,57 x 5,39 x 5,57 pol

DF114 - Módulo de Saídas Analógicas Redundante - Corrente

Este módulo fornece 8 saídas analógicas de corrente. As saídas de corrente podem ser configuradas individualmente nas faixas 4 a 20 mA, 0 a 20 mA ou 0 a 21 mA. O módulo tem um grupo opticamente isolado do IMB.

Arquitetura	
Número de Saídas	8
Número de Grupos	1
Número de Saídas por Grupo	8

Isolação		
Isolação Óptica entre o Grupo e o IMB	5000 Vrms	

Potência Interna	
Fornecida pelo Barramento IMB	5 Vdc
Consumo Máximo	80 mA

Potência Externa	
Fonte de Alimentação (VEXT)	20 - 30 Vdc
Consumo Típico por Módulo	270 mA @ 24Vdc e 21 mA em todos os canais

Saídas	
Tipo das Saídas	Terminação Simples (1 terra)
Impedância por Ponto *	750 Ω @ > 24 Vdc

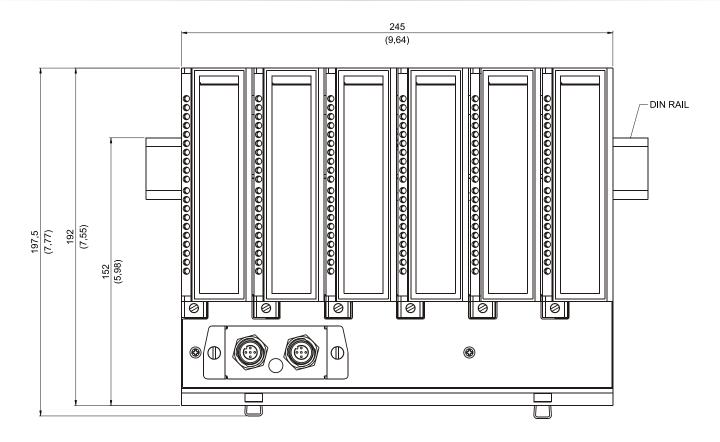
Faixa das Saídas	Faixa 1	Faixa 2	Faixa 3
Corrente de Saída	4 mA a 20 mA	0 mA a 20 mA	0 mA a 21 mA

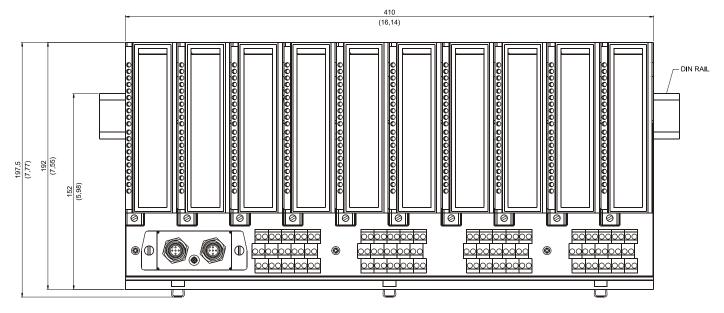
Conversão D/A		
Resolução	12 bits	

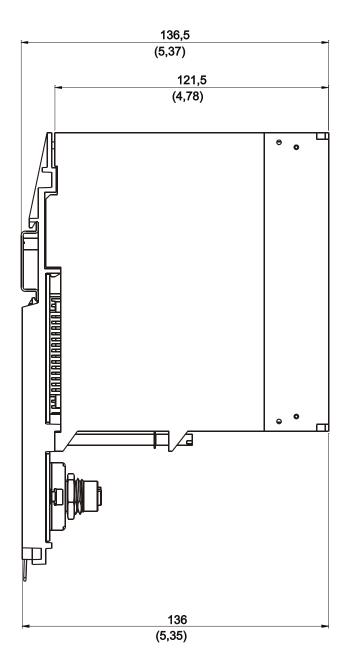
Potência Dissipada	
Típica por Módulo	6,88 W @ 24 Vdc e 21 mA em todos os canais

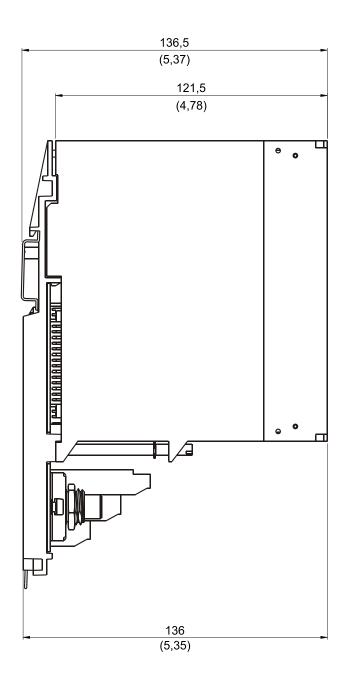
 $^{^{\}star}$ - Com a impedância equivalente do canal em torno de 550 Ω , a tensão de operação pode variar entre 20 e 30 V.

⁻ Quando houver necessidade de obter a melhor precisão do módulo, principalmente em temperaturas altas, é requerido que a mínima impedância equivalente do canal esteja em 750 Ω. Para isto, pode ser necessário acrescentar um resistor residual em série em cada canal. Neste caso, será necessário que a tensão de operação não seja inferior a 24 V.






Temperatura Temperatura	
Operação	0 °C a 60 °C (32 °F a 140 °F)


Dimensões Dimensões	
Dimensões (W x D x H)	39.9 x 137.0 x 141.5mm 1.57 x 5.39 x 5.57 pol

Desenhos Dimensionais

Especificações e informações estão sujeitas a modificações sem prévia consulta. Informações atualizadas dos endereços estão disponíveis em nosso site.

web: www.smar.com/brasil2/faleconosco.asp

©Copyright 2013 - Smar Equipamentos Industriais Ltda - Direitos Reservados - Agosto/2013