MANUAL INSTRUÇÕES | OPERAÇÃO | MANUTENÇÃO

CONVERSOR CORRENTE PARA PROFIBUS COM TRÊS CANAIS IF303

MAIO/25 - VERSÃO 3

Conversor Corrente para Profibus com Três Canais

Rua Dr. Antônio Furlan Junior, 1028 - Sertãozinho, SP - CEP: 14170-480 orcamento@smar.com.br | +55 (16) 3946-3599 | www.smar.com.br

© Copyright 2024, Nova Smar S/A. Todos os direitos reservados. - Dezembro 2024 Especificações e informações estão sujeitas a modificações. Informações atualizadas dos endereços estão disponíveis em nosso site.

INTRODUÇÃO

O **IF303** é um conversor usado como uma interface dos transmissores analógicos para uma rede Profibus PA. O **IF303** recebe até três sinais de corrente de 4-20 mA ou 0-20 mA e os disponibiliza para o sistema Profibus PA. A tecnologia digital usada no **IF303** possibilita uma fácil interface entre o campo e a sala de controle e possui vários recursos que reduzem consideravelmente a instalação, operação e custos de manutenção.

O IF303 é parte dos equipamentos SMAR da linha 303 Profibus PA.

O Profibus PA não é somente uma substituição para o 4-20 mA, ou protocolos inteligentes de transmissores, ele contém muito mais.

A tecnologia digital usada no **IF303** possibilita a escolha de vários tipos de funções de transferência, uma fácil interface entre o campo e a sala de controle e vários outros recursos que reduzem consideravelmente os custos com a instalação, a manutenção e a operação.

Algumas vantagens da comunicação digital bidirecional são a existência de protocolos de transmissão inteligentes: maior precisão, acesso multivariável, configuração remota e diagnóstico e multidropping de vários equipamentos em um único par de fios.

O sistema controla a amostragem de variáveis, a execução de algoritmos e a comunicação para a otimização do uso da rede, sem perda de tempo. Portanto, uma alta performance de malha fechada é alcançada.

Usando a tecnologia Profibus, com sua capacidade de interconexão a vários equipamentos, grandes redes de controle podem ser construídas. Para que esta tecnologia seja amigável, o conceito de blocos de função foi introduzido.

O **IF303**, assim como o resto da família 303, possui alguns blocos de função embutidos como Entradas Analógicas e Blocos Totalizadores.

A necessidade de implementação do Fieldbus em sistemas grandes e pequenos foi considerada durante o desenvolvimento dos equipamentos da linha 303 Profibus-PA. A linha 303 tem características comuns e podem ser configuradas no próprio local usando uma chave magnética. Com isto, elimina-se a necessidade de uma ferramenta de configuração ou console em muitas aplicações básicas.

Leia cuidadosamente estas instruções para obter o máximo aproveitamento do IF303.

NOTA Nos casos em que o Simatic PDM seja usado como ferramenta de configuração e parametrização, a Smar recomenda que não se faça o uso da opção "Download to Device". Esta função pode configurar inadequadamente o equipamento. A Smar recomenda que o usuário faça uso da opção "Download to PG/PC" e depois faça uso do Menu Device, onde se tem os menus dos blocos transdutores, funcionais e display e que se atue pontualmente, de acordo com menus e métodos de leitura e escrita.

Este produto é protegido pela patente Americana número 5,706,007.

NOTA

Este Manual é compatível com as versões 3.XX, onde 3 corresponde a versão do software e XX o release do software. A indicação 3.XX significa que este manual é compatível com qualquer release do software versão 3.

Exclusão de responsabilidade

O conteúdo deste manual está de acordo com o hardware e software utilizados na versão atual do equipamento. Eventualmente podem ocorrer divergências entre este manual e o equipamento. As informações deste documento são revistas periodicamente e as correções necessárias ou identificadas serão incluídas nas edições seguintes. Agradecemos sugestões de melhorias.

Advertência

Para manter a objetividade e clareza, este manual não contém todas as informações detalhadas sobre o produto e, além disso, ele não cobre todos os casos possíveis de montagem, operação ou manutenção.

Antes de instalar e utilizar o equipamento, é necessário verificar se o modelo do equipamento adquirido realmente cumpre os requisitos técnicos e de segurança de acordo com a aplicação. Esta verificação é responsabilidade do usuário.

Se desejar mais informações ou se surgirem problemas específicos que não foram detalhados e ou tratados neste manual, o usuário deve obter as informações necessárias do fabricante Smar. Além disso, o usuário está ciente que o conteúdo do manual não altera, de forma alguma, acordo, confirmação ou relação judicial do passado ou do presente e nem faz parte dos mesmos.

Todas as obrigações da Smar são resultantes do respectivo contrato de compra firmado entre as partes, o qual contém o termo de garantia completo e de validade única. As cláusulas contratuais relativas à garantia não são nem limitadas nem ampliadas em razão das informações técnicas apresentadas no manual.

Só é permitida a participação de pessoal qualificado para as atividades de montagem, conexão elétrica, colocação em funcionamento e manutenção do equipamento. Entende-se por pessoal qualificado os profissionais familiarizados com a montagem, conexão elétrica, colocação em funcionamento e operação do equipamento ou outro aparelho similar e que dispõem das qualificações necessárias para suas atividades. A Smar possui treinamentos específicos para formação e qualificação de tais profissionais. Adicionalmente, devem ser obedecidos os procedimentos de segurança apropriados para a montagem e operação de instalações elétricas de acordo com as normas de cada país em questão, assim como os decretos e diretivas sobre áreas classificadas, como segurança intrínseca, prova de explosão, segurança aumentada, sistemas instrumentados de segurança entre outros.

O usuário é responsável pelo manuseio incorreto e/ou inadequado de equipamentos operados com pressão pneumática ou hidráulica, ou ainda submetidos a produtos corrosivos, agressivos ou combustíveis, uma vez que sua utilização pode causar ferimentos corporais graves e/ou danos materiais.

O equipamento de campo que é referido neste manual, quando adquirido com certificado para áreas classificadas ou perigosas, perde sua certificação quando tem suas partes trocadas ou intercambiadas sem passar por testes funcionais e de aprovação pela Smar ou assistências técnicas autorizadas da Smar, que são as entidades jurídicas competentes para atestar que o equipamento como um todo, atende as normas e diretivas aplicáveis. O mesmo acontece ao se converter um equipamento de um protocolo de comunicação para outro. Neste caso, é necessário o envio do equipamento para a Smar ou à sua assistência autorizada. Além disso, os certificados são distintos e é responsabilidade do usuário sua correta utilização.

Respeite sempre as instruções fornecidas neste Manual. A Smar não se responsabiliza por quaisquer perdas e/ou danos resultantes da utilização inadequada de seus equipamentos. É responsabilidade do usuário conhecer as normas aplicáveis e práticas seguras em seu país.

ÍNDICE

SEÇÃO 1 - INSTALAÇÃO	
GERAL	
MONTAGEM.	
TOPOLOGIA E CONFIGURAÇÃO EM REDE	1.3
BARREIRA DE SEGURANÇA INTRINSECA	1.5
CONFIGURAÇAO DE JUMPER	1.5
FONTE DE ALIMENTAÇÃO	1.5
FIAÇAO DE ENTRADA	1.5
INSTALAÇÕES EM ÁREAS PERIGOSAS	1.7
DESCRIÇÃO FUNCIONAL – ELETRONICA	2.1
SEÇÃO 3 - CONFIGURAÇÃO	
BLOCO TRANSDUTOR	
COMO CONFIGURAR UM BLOCO TRANSDUTOR	3.1
NUMERO DE TERMINAL	3.1
DIAGRAMA FUNCIONAL DO BLOCO TRANSDUTOR DE CORRENTE PARA PROFIBUS PA	3.2
DESCRIÇÃO GERAL DOS PARÂMETROS DO BLOCO TRANSDUTOR DE CORRENTE PARA PROFIBUS PA	3.3
ATRIBUTOS DOS PARÂMETROS DO BLOCO TRANSDUTOR	3.4
CONFIGURAÇÃO CÍCLICA DO IF303	3.5
COMO CONFÍGURAR O BLOCO DE ENTRADA ANALÓGICO	3.9
COMO CONFIGURAR O BLOCO TOTALIZADOR	3.12
TRIM DE CORRENTE	3.17
ADJUSTES VIA LOCAL	3.20
CONFIGURAÇÃO DO TRANSDUTOR DO DISPLAY	
BLOCO TRANSDUTOR DO DISPLAY	
DEFINIÇÃO DE PARÂMETROS E VALORES	3.22
PROGRAMAÇÃO LISANDO A ILISTE LOCAL	3 27
GUIA RÁPIDO - ÁBVORE DE A IUSTE LOCAL	3 29
	3 30
	3 30
	2 22
	3.32
SEÇAO 4 - PROCEDIMENTO DE MANUTENÇAO GERAL	4 1
PROCEDIMENTO DE DESMONTAGEM	4 2
	4.2
	4 3
	4.3
RELAÇÃO DAS FEÇÃS SOBRESSALENTES	
TESTE DE ISOLAMENTO DA CARCAÇA	4.0
SEÇÃO 5 - CARACTERÍSTICAS TÉCNICAS	5.1
CÓDIGO DE PEDIDO	5.2
APÊNDICE A - INFORMAÇÕES SOBRE CERTIFICAÇÕES	A.1
APÊNDICE B – FSR – FORMULÁRIO PARA SOLICITAÇÃO DE REVISÃO	B.1
RETORNO DE MATERIAIS	B.2

Fluxograma de Instalação

INSTALAÇÃO

Geral

NOTA

As instalações feitas em áreas classificadas devem seguir as recomendações da norma NBR/IEC60079-14.

A precisão geral de medidas e controle depende de várias variáveis. O conversor possui uma excelente performance, mas a instalação correta é essencial para que sua performance seja máxima.

De todos os fatores que podem afetar a precisão dos conversores, as condições ambientais são as mais difíceis de controlar. Entretanto, há maneiras de se reduzir os efeitos da temperatura, umidade e vibração.

Os efeitos devido à variação de temperatura podem ser minimizados montando-se o conversor em áreas protegidas de mudanças ambientais.

Em ambientes quentes, o conversor deve ser instalado de forma a evitar ao máximo a exposição direta aos raios solares. Deve-se evitar, também, a instalação do conversor próximo a linhas e locais sujeitos a alta temperatura.

Quando necessário, use isolação térmica para proteger o conversor de fontes externas de calor.

A umidade é fatal aos circuitos eletrônicos. Em áreas com altos índices de umidade relativa deve-se certificar da correta colocação dos anéis de vedação das tampas da carcaça. As tampas devem ser completamente fechadas manualmente até que o anel o-ring seja comprimido. Evite usar ferramentas nesta operação. Procure não retirar as tampas da carcaça no campo, pois cada abertura introduz mais umidade nos circuitos. O circuito eletrônico é revestido por um verniz à prova de umidade, mas exposições constantes podem comprometer esta proteção. Também é importante manter as tampas fechadas, pois cada vez que elas são removidas o meio corrosivo pode atacar as roscas da carcaça devido nesta parte não existir a proteção da pintura. Use vedante não endurecível nas conexões elétricas para evitar a penetração de umidade.

Montagem

Usando o suporte, a montagem pode ser feita em várias posições, como mostradas na Figura 1.3 – Posições de Montagem e Desenho Dimensional.

Para obter uma visibilidade melhor, o indicador digital pode ser rotacionado em ângulos de 90°. (Veja seção 4, Procedimento de Manutenção).

Fiação Elétrica

O acesso ao bloco de ligação é possível removendo-se a tampa que é travada através do parafuso de trava (Veja Figura 1.1 – Travamento da Tampa). Para soltar a tampa, gire o parafuso de trava no sentido horário.

O acesso dos cabos de sinal aos terminais de ligação pode ser feito por uma das passagens na carcaça, que podem ser conectadas a um eletroduto ou prensacabos. As roscas dos eletrodutos devem ser vedadas conforme método de vedação requerido pela área. A passagem não utilizada deve ser vedada com bujão e vedante apropriado.

O bloco de ligação possue parafusos para fixação de terminais tipo garfo ou olhal, veja Figura 1.2 – Bloco Terminal.

Figure 1.1 – Trava da Tampa

Para maior conveniência, existem três terminais terra: um interno e dois externos localizados próximo ao terminador.

Figure 1.2 - Bloco Terminal

Vários tipos de equipamentos Fieldbus podem ser conectados no mesmo barramento.

O **IF303** é alimentado pelo barramento. O limite para tais equipamentos está de acordo com as limitações DP/PA para um barramento (um segmento) para áreas não-intrinsecamente seguras.

Em áreas de risco, o número de dispositivos pode ser limitado por restrições de segurança intrínseca, de acordo com as limitações DP/PA para acopladores e barreiras.

O **IF303** é protegido contra polaridade reversa, e suporta até ±35 VDC sem nenhum dano, mas não opera com polaridade reversa.

Figura 1.3 - Desenho Dimensional e Posições de Montagem

Topologia e Configuração em Rede

Topologia de Barramento (Veja a Figura 1.4 - Topologia Barramento) e Topologia Árvore (Veja a Figura 1.5 - Topologia Árvore) são suportadas. Ambos os tipos possuem um cabo tronco com duas terminações. Os equipamentos são conectados ao tronco através de braços. Estes braços podem ser integrados ao equipamento com comprimento zero. Um braço pode conter mais de um equipamento, dependendo do comprimento. Acopladores ativos podem ser usados para aumentar o comprimento do braço.

Repetidores ativos podem ser usados para estender o comprimento do tronco.

O comprimento total do cabo entre dois equipamentos no Profibus PA, incluindo os braços, não deve exceder 1900 m.

Figura 1.4 - Topologia de Barramento

Figure 1.5 - Configuração de Topologia de Árvore

Barreira de Segurança Intrínseca

Quando o conversor Profibus PA estiver em uma área onde é necessária segurança intrínseca, uma barreira deve ser inserida no tronco. Se o acoplador DP/PA já for já for intrinsecamente seguro, não há esta necessidade. O uso do **DF47-17** (barreira de segurança intrínseca Smar) é recomendado.

Configuração de Jumper

Para que funcione corretamente, os jumpers **J1** e **W1** localizados na placa principal no **IF303** devem estar corretamente configurados (Veja a Tabela 1.1 - Descrição dos Jumpers).

J1	Este jumper habilita o parâmetro modo de simulação no bloco AI.
W1	Este jumper habilita a árvore de programação e ajustes locais.

Tabela 1.1 - Descrição dos Jumpers

Fonte de Alimentação

O **IF303** é alimentado através da fiação de sinal do barramento. A fonte de alimentação pode vir de uma unidade separada ou de outro equipamento como um controlador ou um DCS.

A tensão deverá ser de 9 a 32 Vdc para aplicações não seguras intrinsecamente.

Deve-se usar uma fonte de alimentação especial num barramento intrinsecamente seguro. A Smar possui a fonte **PS302** (intrinsecamente segura) para esse uso.

Fiação de Entrada

O **IF303** aceita até três entradas de corrente na faixa de 0-20 mA ou 4-20 mA. As três entradas têm um ponto comum de aterramento e são protegidas contra polarização reversa. As entradas devem ser conectadas conforme a Figura 1.6 – Fiação de Entrada.

Figura 1.6 – Fiação de Entrada

IF303 - Manual de Instrução Operação e Manutenção

Note que o **IF303** pode operar com transmissores nos padrões 0-20 mA ou 4-20mA (Veja a Figure 1.7 - Conexão).

Evite passar os cabos de entrada próximos a cabos de alimentação ou equipamento de chaveamento.

ADVERTÊNCIA Aplique nas entradas do conversor somente níveis de corrente. Não aplique níveis de tensão, pois os resistores de shunt é de 100 R 1 W e tensão acima de 10 Vdc podem danificá-los.

Instalações em Áreas Perigosas

Consulte o Apêndice "A" para informações adicionais sobre certificação.

OPERAÇÃO

O **IF303** aceita sinais de geradores de corrente (mA) como a maioria dos transmissores convencionais. Ele é ideal como uma interface dos equipamentos existentes para um sistema Fieldbus.

Descrição Funcional – Eletrônica

Veja a Figura 2.2 - Diagrama de Bloco. A função de cada bloco desse diagrama é descrito abaixo.

MUX Multiplexador

O MUX multiplexa os terminais de entrada para assegurar que o três canais alcançarão o conversor A/D.

Conversor A/D

O conversor A/D converte os sinais para um formato digital para a CPU.

Isolador de Sinais

Sua função é de isolar o sinal entre a entrada e a CPU.

(CPU) Unidade de Processamento Central, RAM e FLASH

À CPU é a parte inteligente do conversor sendo responsável pelo gerenciamento e operação da execução do bloco, pelo auto-diagnóstico e pela comunicação. O programa é armazenado em memória FLASH. Para armazenamento temporário de dados existe a memória RAM. Os dados na RAM serão perdidos se o equipamento for desligado, portanto o equipamento possui uma EEPROM não volátil onde os dados são armazenados. Exempo de tais dados são: calibração, configuração e dados de identificação.

Controlador de Comunicação

Monitora atividade na linha, modula e demodula o sinal da linha da rede.

Fonte de Alimentação

Obtém energia da malha para alimentar os circuitos do conversor.

Isolamento de Energia

Assim como os sinais da seção de entrada, a energia da seção de entrada deve ser isolada.

Controlador do Display

Recebe dados da CPU e controla o Display de Cristal Líquido.

Ajustes Locais

Existem duas chaves que são magneticamente ativas. Podem ser ativadas pela ferramenta magnética sem contato elétrico ou mecânico.

Figura 2.1 – Indicador de Cristal Líquido

CONFIGURAÇÃO

Uma das vantagens do uso de tecnologias *fieldbus* é a possibilidade de configuração remota do equipamento é independente do software configurador. O **IF303** pode ser configurado por aplicativos de outros fornecedores ou pelos configuradores PROFIBUS da SMAR: ProfibusView ou AssetView com suporte à FDT.

O **IF303** contém três blocos transdutores de entrada, um bloco físico, um bloco transdutor do display, três blocos funcionais de entradas analógicas e três blocos funcionais totalizadores.

Os blocos funcionais não são cobertos por este manual. Para explicações e detalhes sobre eles, veja o manual especifico de blocos de função PROFIBUS PA.

Configuração Offline:

- 1. Primeiramente efetue "Download to PG/PC", para garantir valores válidos;
- 2. Em seguida use a opção Menu Device para realizar a configuração dos parâmetros necessários nos menus específicos.

ΝΟΤΑ
Recomenda-se não usar a opção "Download to Device". Esta função pode configurar inadequadamente o
equipamento.

Bloco Transdutor

O bloco transdutor isola o bloco de função do E/S específico do hardware, tais como os sensores e os atuadores. Os blocos transdutores controlam o acesso a E/S através da implementação específica do fabricante. Isso permite o bloco transdutor executar tantas vezes quanto forem necessárias para obter os dados válidos dos sensores sem sobrecarregar os blocos de função que irão utilizá-los. Ele também isola os blocos de função das características específicas dos fabricantes.

Ao acessar o hardware, o bloco transdutor pode obter os dados de E/S dele, ou passar os seus dados de controle. A conexão entre o bloco transdutor e bloco de função E/S é chamado de canal. Normalmente, os blocos transdutores executam funções, tais como: linearização, caracterização, compensação de temperatura, controle e troca de dados para/do o hardware.

Como Configurar um Bloco Transdutor

O Bloco Transdutor possui algoritmos, parâmetros "contained" (não são disponibilizados para outros blocos, isto é, não são linkados) e um canal conectando-a um bloco de função. O algorítmo descreve o comportamento do transdutor como uma função de transferência entre o hardware E/S e o outro bloco de função. Os conjuntos dos parâmetros "contained" definem a interface do usuário ao bloco transdutor. Eles podem ser divididos em Padrão e Específico do Fabricante.

Os parâmetros padrões estarão presentes nas classes de equipamentos como pressão, temperatura, atuador, etc., independente do fabricante. Por outro lado, os parâmetros específicos do fabricante, são definidos pelos mesmos. Assim, como os parâmetros específicos de fabricante, temos os ajustes de calibração, informação do material, curva de linearização, etc.

Ao se fazer uma rotina de calibração, o usuário é conduzido passo a passo por um método. O método de calibração geralmente é definido como um guia para ajudar o usuário. A **Ferramenta de Configuração** identifica cada método associado aos parâmetros e habilita a interface gráfica com o usuário.

Número de Terminal

O número de terminal, se refere a uma entrada física que é enviada internamente da saída do bloco transdutor especificado para o bloco de função.

Inicia no canal um (1), para o transdutor de número um (1), e pode ir até o canal três (3), para o transdutor de número três (3).

O número do canal do bloco AI e do bloco TOT estão relacionados ao número do terminal do transdutor. Os canais de número 1, 2, 3 correspondem ao bloco terminal com o mesmo número.

Portanto, tudo que o usuário tem que fazer é selecionar as combinações: (1, 1), (2, 2), (3, 3) para o canal (CHANNEL) e o (BLOCK).

Diagrama Funcional do Bloco Transdutor de Corrente para PROFIBUS PA

Figura 3.1 – Diagrama Funcional do Bloco Transdutor Corrente para PROFIBUS PA

Descrição Geral dos Parâmetros do Bloco Transdutor de Corrente para PROFIBUS PA

Parâmetro	Descrição
BACKUP_RESTORE	 Este parâmetro permite armazenar e restaurar dados de acordo com os procedimentos de fábrica e calibração do usuário. Ele possui as seguintes opções: 1, "Factory Cal Restore" (Restaura a Calibração de Fábrica); 2, "Last Cal Restore" (Restaura a Última Calibração); 3, "Default Data Restore" (Restaura os Dados Padrões); 11, "Factory Cal Backup" (Backup da Calibração de Fábrica); 12, "Last Cal Backup" (Backup da Última Calibração); 14, "Shut-Down Data Backup" (Backup dos Dados); 0, "None" (Nenhum).
CAL_MIN_SPAN	Este parâmetro contém o valor mínimo permitido do span de calibração. Esta informação do mínimo span é necessária para garantir que quando é feita a calibração, os dois pontos calibrados (alto e baixo) não estarão muito próximos. A unidade está de acordo com o parâmetro SENSOR_UNIT.
CAL_POINT_HI	Este parâmetro contém o mais alto valor calibrado. Para calibração do ponto limite alto é dado o valor de medição alta (pressão) ao sensor e, este ponto, é transferido ao transmissor como HIGH (alto). A unidade está de acordo com o parâmetro SENSOR_UNIT.
CAL_POINT_LO	Este parâmetro contém o mais baixo valor calibrado. Para calibração do ponto limite baixo é dado o valor de medição baixa (pressão) ao sensor, e este ponto é transferido ao transmissor como LOW (baixo). Unidade está de acordo com o parâmetro SENSOR_UNIT.
LIN_TYPE	Tipo de Linearização: 0 – No Linearization (sem linearização) 10 – Square Root (raíz guadrada)
LOW_FLOW_CUT_OFF	Este é o ponto em porcentagem do fluxo até que a saída da função fluxo seja ajustada em zero. Ele é usado para a supressão de valores baixos de fluxo.
FLOW_LIN_SQRT_POINT	Este é o ponto da função fluxo onde a curva da função muda de linear para quadrática. A entrada terá de ser feita em porcentagem do fluxo.
MAINT_DATE	A data da última manutenção.
EEPROM_FLAG	Este parâmetro é usado para indicar o processo de armazenamento na EEPROM.
FACTORY_GAIN_REFERENCE	Valor de referência da calibração de fábrica.
MAIN_BOARD_SN	Este é o número de série da placa principal.
MAX_SENSOR_VALUE	Armazena o SENSOR_VALUE máximo do processo. Um acesso para gravação neste parâmetro reinicializa o valor instantâneo. A unidade é definida em SENSOR_UNIT.
MIN_SENSOR_VALUE	Armazena o SENSOR_VALUE mínimo do processo. Um acesso para gravação neste parâmetro reinicializa o valor instantâneo. A unidade é definida em SENSOR_UNIT.
ORDERING_CODE	Indica informações sobre o sensor e controle da fábrica.
PRIMARY_VALUE	Este parâmetro contém o valor medido e o status disponível para o Bloco de Função. A unidade do PRIMARY_VALUE é o PRIMARY_VALUE_UNIT.
PRIMARY_VALUE_TYPE	Este parâmetro contém o aplicativo do equipamento. > 128: especifico do fabricante.
PRIMARY_VALUE_UNIT	Este parâmetro contém o índice de códigos das unidades de engenharia para o valor primário. Neste caso o código da unidade é mA (1211).
SECONDARY_VALUE_1	Este parâmetro contém o valor e o status atual disponível ao Bloco de Função.
SECONDARY_VALUE_1_UNIT	Este parâmetro contém as unidades correntes do SECONDARY_VALUE_1. Neste caso o código da unidade é mA (1211).
SECONDARY_VALUE_2	Este parâmetro contém o valor medido eo status disponível ao Bloco de Função. A unidade relacionada é a SECONDARY_VALUE_UNIT_2. Neste caso o código da unidade é % (1342).
SECONDARY_VALUE_2_UNIT	Este parâmetro contém as unidades do SECONDARY_VALUE_2 definido pelo fabricante. Neste caso o código da unidade é mA (1211).
SCALE_IN	Esta é a conversão da entrada de corrente para PRIMARY_VALUE usando as escalas alta e baixa. A unidade relacionada é a PRIMARY_VALUE_UNIT.

SCALE_OUT	Esta é o valor da conversão de saída usando as escalas alta e baixa. A unidade relacionada é a PRIMARY_VALUE_UNIT.
SENSOR_HI_LIM	Este parâmetro contém o valor limite superior do sensor. A unidade está de acordo com SENSOR_UNIT.
SENSOR_LO_LIM	Este parâmetro contém o valor limite inferior. A unidade está de acordo com SENSOR_UNIT.
SENSOR_UNIT	Este parâmetro contém o índice dos códigos das unidades de engenharia para os valores de calibração. Neste caso o código da unidade é mA (1211).
SENSOR_SN	O número de série do sensor.
SENSOR_VALUE	Este parâmetro contém o valor bruto do sensor. O valor medido do sensor sem calibração. Unidade está de acordo com SENSOR_UNIT.
TERMINAL_NUMBER	O número do terminal, que se refere a um valor de canal, o qual é enviado internamente, específico do fabricante do bloco de função ao transdutor especificado. Inicia-se em um (1) para o transdutor de número um e termina em três (3) para ransdutor de número três.
TRIMMED_VALUE	Este parâmetro contém o valor do sensor após o processamento do Trim. Unidade está de acordo com SENSOR_UNIT.
XD_ERROR	Indica a condição do processo de calibração de acordo com: {16, "Default value set"}, {22, "Applied process out of range"}, {26, "Invalid configuration for request"}, {27, "Excess correction"}, {28, "Calibration failed"}

Tabela 3.1 - Descrição dos Parâmetros

Atributos dos Parâmetros do Bloco Transdutor

Índice Relativo	Parâmetro Mnemônico	Tipo de Objeto	Tipo de Dado	Store	Tama- nho	Acesso	Uso do parametro/ Tipo de transporte	Valor Padrão	Ordem de Download	Mandatório/ Opcional (Classe)	View	
	Parâmetro Padrão											
	Additional Parameter for Transducer Block											
8	SENSOR_VALUE	Simples	Float	D	4	r	C/a	0	-	M (B)		
9	SENSOR_HI_LIM	Simples	Float	Ν	4	r	C/a	0	-	M (B)		
10	SENSOR_LO_LIM	Simples	Float	Ν	4	r	C/a	0	-	M (B)		
11	CAL_POINT_HI	Simples	Float	Ν	4	r,w	C/a	20.0	-	M (B)		
12	CAL_POINT_LO	Simples	Float	Ν	4	r,w	C/a	4.0	-	M (B)		
13	CAL_MIN_SPAN	Simples	Float	Ν	4	r	C/a	0	-	M (B)		
14	MAINT_DATE	Simples	Octet String	S	16	w,w	C/a			O(B)		
15	SENSOR_UNIT	Simples	Unsigned 16	N	2	r,w	C/a	1211	-	М (В)		
16	SENSOR_SN	Simples	Unsigned 32	N	4	r,w	C/a		-	М (В)		
17	TRIMMED_VALUE	Grava	DS-33	D	5	r	C/a	0.0	-	M (B)		
18	PRIMARY_VALUE	Grava	DS-33	D	5	r	C/a	0.0	-	M (B)	1	
19	PRIMARY_VALUE_UNIT	Simples	Não marcado 16	N	2	r,w	C/a	-	-	М (В)		
20	PRIMARY_VALUE_TYPE	Simples	Unsigned 16	N	2	r,w	C/a	255	-	M (B)		
21	SECONDARY_VALUE_1	Grava	DS-33	D	5	r	C/a	0.0	-	O (B)		
22	SECONDARY_VALUE_1_UNIT	Simples	Unsigned 16	N	2	r,w	C/a	mA	-	O (B)		
23	SECONDARY_VALUE_2	Grava	DS-33	D	5	r	C/a	0	-	O (B)		

							-				
24	SECONDARY_VALUE_2_UNIT	Simples	Unsigned 16	Ν	2	r,w	C/a	%	-	O (B)	
25	SCALE_IN	Array	Float	S	8	r,w	C/a	20.0 4.0	-	O(B)	
26	SCALE_OUT	Array	Float	S	8	r,w	C/a	20.0 4.0	-	O(B)	
27	MAX_SENSOR_VALUE	Simples	Float	Ν	4	r,w	C/a	0.0	-	O (B)	
28	MIN_SENSOR_VALUE	Simples	Float	Ν	4	r,w	C/a	0.0	-	O (B)	
29	TERMINAL_NUMBER	Simples	Unsigned 8	S	1	r,w	C/a	0	-	O (B)	
30	LIN_TYPE	Simples	Unsigned 8	S	1	r,w	C/a	0	-	O (B)	
31	LOW_FLOW_CUT_OFF	Simples	Float	s	4	r,w	C/a	0	-	O (B)	
32	FLOW_LIN_SQRT_POINT	Simples	Float	s	4	r,w	C/a	0		O (B)	
33-40	RESERVED										
41	BACKUP_RESTORE	Simples	Unsigned 8	S	1	r,w	C/a	0	-	O (B)	
42	XD_ERROR	Simples	Unsigned 8	D	1	r	C/a	0x10	-	O (B)	
43	MAIN_BOARD_SN	Simples	Unsigned 32	s	4	r,w	C/a	0	-	O (B)	
44	EEPROM_FLAG	Simples	Unsigned 8	D	1	r	C/a	FALSE	-	O (B)	
45	FACTORY_GAIN_REFERENCE	Simples	Float	S	4	r,w	C/a	0	-	O (B)	
46	ORDERING_CODE	Array	Unsigned 8	S	50	r,w	C/a	-	-	O (B)	

Tabela 3.2 – Atributos dos Parâmetros

Para maiores informações sobre as características dos parâmetros refira-se ao manual FUNCTION BLOCKS PROFIBUS PA, disponível em nosso site: http://www.smar.com.br.

Configuração Cíclica do IF303

Os protocolos PROFIBUS-DP e PROFIBUS-PA possuem mecanismos contra falhas e erros de comunicação entre o equipamento da rede e o mestre. Por exemplo, durante a inicialização do equipamento esses mecanismos são utilizados para verificar esses possíveis erros. Após a energização (*power up*) do equipamento de campo (escravo) pode-se trocar dados ciclicamente com o mestre classe 1, se a parametrização para o escravo estiver correta. Estas informações são obtidas através dos arquivos GSD (arquivos fornecidos pelos fabricantes dos equipamentos que contém suas descrições). Através dos comandos abaixo, o mestre executa todo o processo de inicialização com os equipamentos PROFIBUS-PA:

- Get_Cfg: carrega a configuração dos escravos no mestre e verifica a configuração da rede;
- Set_Prm: escreve nos parâmetros dos escravos e executa os serviços de parametrização da rede;
- Set_Cfg: configura os escravos de acordo com as entradas e saídas;
- Get_Cfg: um outro comando, onde o mestre verifica a configuração dos escravos.

Todos estes serviços são baseados nas informações obtidas dos arquivos gsd dos escravos. O arquivo GSD do **IF303** mostra os detalhes de revisão do hardware e do software, *bus timing* (temporizarão de rede) do equipamento e informações sobre a troca de dados cíclicos.

O **IF303** possui 6 blocos funcionais: 3 Als e 3 Totalizadores. Possui também o módulo vazio (Empty module) para aplicações onde se quer configurar apenas alguns blocos funcionais. Para isso, devese respeitar a seguinte ordem cíclica dos blocos: Al_1, Al_2, Al_3 e TOT_1, TOT_2, TOT_3. Supondo que se queira trabalhar somente com os blocos Als, configure-os assim: Al_1, Al_2, Al_3, EMPTY_MODULE, EMPTY_MODULE, EMPTY_MODULE. No entanto, se quiser trabalhar apenas com um Al e um TOT, faça o seguinte:Al_1, EMPTY_MODULE, EMPTY_MODULE, EMPTY_MODULE, EMPTY_MODULE, EMPTY_MODULE, EMPTY_MODULE.

A maioria dos configuradores PROFIBUS utiliza dois diretórios onde se deve ter os arquivos GSD's e BITMAP's dos diversos fabricantes. Os GSD's e BITMAPS para os equipamentos da SMAR podem

ser adquiridos via Internet no site https://www.smar.com.br, página do produto, na aba: Download.

O exemplo a seguir mostra os passos necessários para integrar o **IF303** em um sistema PA. Estes passos são válidos para todos os equipamentos da linha 303 da SMAR:

- Copie o arquivo gsd do IF303 para o diretório de pesquisa do configurador PROFIBUS, normalmente chamado de GSD;
- Copie o arquivo bitmap do **IF303** para o diretório de pesquisa do configurador PROFIBUS, normalmente chamado de BMP;
- Após definir o mestre, escolha a taxa de comunicação. Lembre-se de que existem acopladores DP/PA (*couplers*) com a taxa de comunicação fixa: 45,45 kbits/s (Siemens) ou 93,75 kbits/s (P+F); e os de taxa variável até 12Mbits/s como os módulos SK2 e SK3 da Pepperl-Fuchs, IM157 da Siemens e os controladores/*gatways* SMAR com acesso direto ao barramento PA (DF95 ou DF97), sem a necessidade de acopladores externos;
- Acrescente o IF303 e especifique o seu endereço no barramento;
- Escolha a configuração cíclica via parametrização com o arquivo gsd, que depende da aplicação, conforme visto anteriormente. Para cada bloco AI, o IF303 fornece ao mestre o valor da variável de processo em 5 bytes, sendo os quatro primeiros no formato ponto flutuante e o quinto byte é o status que traz a informação da qualidade desta medição.

No bloco TOT, pode-se escolher o valor da totalização (Total) e a integração é feita considerandose o modo de operação (Mode_Tot). Ele permite definir como será a totalização com as seguintes opções: somente valores positivos de vazão, somente valores negativos de vazão ou ambos valores. Nesse bloco, pode-se reinicializar (resetar) a totalização e configurar um valor de preset (posicionar previamente ok) através do parâmetro Set_Tot. A opção de reset é muito utilizada em processos por bateladas;

• Permite ativar a condição de *watchdog*, que faz o equipamento ir para uma condição de falha segura ao detectar uma perda de comunicação entre o equipamento escravo e o mestre.

Os softwares de configuração **ProfibusView, AssetView FDT da Smar** ou **Simatic PDM** da Siemens, por exemplo, podem configurar vários parâmetros do Bloco Transdutor (Figura 3.2 - Blocos de Função e Transdutores).

Figura 3.2 - Blocos de Função e Transdutores - ProfibusView

B (Offline) Par	ameter	Value	Unit	Status
Vevice Info	ne)			
ransducer (3) » Device	Info			
otalizer (3) » » Man	ufacture In	fo		
Visplay Manufacture	er	Smar		Loaded
Device ID		004800111		Loaded
» » Defi	ne Device I	Block Tags		
Physical Ta	g	IFee303-BB13		Loaded
Transducer	1 Tag	TRANSDUCER BLOCK - IF303 1		Loaded
Analog Inpu	t 1 Tag	ANALOG INPUT BLOCK		Loaded
Totalizer 1 T	ag	TOTALIZER BLOCK		Loaded
Transducer	2 Tag	TRANSDUCER BLOCK - IF303 2		Loaded
Analog Inpu	t 2 Tag	ANALOG INPUT BLOCK		Loaded
Totalizer 2 T	ag	TOTALIZER BLOCK		Loaded
Transducer	3 Tag	TRANSDUCER BLOCK - IF303 3		Loaded
Analog Inpu	t 3 Tag	ANALOG INPUT BLOCK		Loaded
Totalizer 3 T	ag	TOTALIZER BLOCK		Loaded
Display Tag		DSP BLOCK		Loaded
» » Des	criptor, Mes	sage and Date		
Descriptor				Loaded
Message				Loaded
Installation I	Date			Loaded

Figura 3.3 - Blocos de Função e Transdutores - Simatic PDM

Para configurar o Bloco Transdutor, selecione-o no menu principal:

Figure 3.4 - Bloco Transdutor - ProfibusView

insducer 1 Transduc	cer 2 Transduc	er 3	
Belect Linearizatior	туре		
inearization type	No Linearisa	ion 🔽	Write
Set Scale of Analog	i Current Value		
.ower [EU(0%)]	4	mA	Write
Upper (EU(100%))	20	mA	
Set Scale of Output	Value		1
.ower [EU(0%)]	4	m³/s	Write
Upper (EU(100%))	20	m³/s	
Select Output Unit -			
Output Unit (EU)	m³∕s		Write

Figure 3.5 - Bloco Transdutor - Simatic PDM

Ao selecionar "*Square Root*", é necessário configurar mais dois parâmetros: "*Low Flow Cutoff*" e "*Flow Lin Sqr Point*". Para maiores detalhes, veja a figura 3.6 - Cálculo da Raiz e a figura 3.1 – Diagrama Funcional do Bloco Transdutor Corrente para PROFIBUS PA.

Em termos de raiz Quadrada, tem se a seguinte característica:

Figura 3.6 – Cálculo da Raíz Quadrada.

Como Configurar o Bloco de Entrada Analógico

O Bloco de Entrada Analógico leva o dado de entrada do Bloco Transdutor, selecionado por um canal, e disponibiliza-o para outros blocos de função como sua saída.

O Bloco Transdutor fornece a unidade de Entrada Analógica e quando ela for alterada no transdutor a unidade PV_SCALE também é alterada. Opcionalmente, um filtro pode ser aplicado no sinal do processo, cuja constante de tempo é PV_FTIME. Considerando uma pequena mudança na entrada, este é o período em segundos até que a PV alcance 63,2% do valor final. Se o valor PV_FTIME for zero, o filtro é desabilitado. Para maiores detalhes, veja as especificações dos Blocos Funcionais.

Para configurar o **Bloco Analógico de Entrada**, selecione-o no menu principal. Usando a tela pode se configurar o modo de operação do bloco, selecionar o canal, as escalas, as unidades para os valores de entrada e saída e o amortecimento.

1		X
	Basic Settings Advanced Settings Cor	nfig Block Mode
O usuário pode configurar o modo de operação do bloco.	Analog Input 1 Blog	ck
O usuário pode selecionar PV (Valor Primário), Sec Value 1 (Valor Secundário 1) or Sec Value 2 (Valor Secundário 2) para o	Scale of Input Value Upper [EU(100%)] Lower [EU(0%)] Unit	100,000 0,000 pti
Valor de escala de entrada. A unidade vem do bloco transdutor.	Upper [EU(100%)] Lower [EU(0%)] Unit	50,00 0,000 psi
Escala e unidade para o valor da saida.	Damping Value	14000 s
O usuário pode configurar o valor de damping da PV.		Write

Figura 3.7- Ajustes básicos para o Bloco Analógico de Entrada - Profibus View

Select Block Mode			
Target	AUTO		VVrite
Select Input			
Channel	PV	*	VVrite
Set Scale of Input V	/alue		
Upper [EU(100%)]	20	m³∕s	VVrite
Lower [EU(0%)]	4	m³/s	
Set Scale of Output	Value		
Upper [EU(100%)]	20	mA	VVrite
Lower [EU(0%)]	4	mA	
Unit	mA	<u> </u>	
Set PV Damping Va	alue		
Damping	0	s	VVrite

Figura 3.8 - Ajustes básicos para o Bloco Analógico de Entrada - Simatic PDM

Selecionando a ab	a "Advanced Settings",	o usuário pode	configurar as	condições par	a os alarmes e
os avisos, assim co	omo a condição de falha	a segura (<i>fail-sa</i>	afe): Veja figura	a 3.9	

					×
	Basic Settings	Advanced Settings	Config Block Mode		
	Analog	Input 1 B	lock	-	7
O usuário pode	Upp	er Limit Alarm	50,000		
configurar as condições de alarme/ segurança.	Upp	er Limit Warning	50,000		
	Low	er Limit Alarm	0,000		
	Low	er Limit Warning	0,000		
	Lim	it Hysteresis	0,5		
	Unit	E.	%	¥ %	
As condicões de	Fail	Safe Values			
falha segura.	- Fail	Safe Type	Last Usable Va	lue 💌	
	Fail	Safe Value	0,000		
				Write	telp

Figura 3.9 - Ajustes Avançados para o Bloco Analógico de Entrada - ProfibusView.

Set Marmovarning Li	mus		
Jpper Limit Alarm	1.#INF	mA	VVrite
Jpper Limit Warning	1.#INF	mA	
Lower Limit Alarm	0	mA	
ower Limit Warning	0	mA	
_imit Hysteresis	0.5	%	
Jnit	mA		
Set Fail Safe Values			
Fail Safe Type	Last Valid Output	-	Write
Fail Safe Value	0	mA	

Figura 3.10 - Ajustes Avançados para o Bloco Analógico de Entrada - Simatic PDM

		X
	Basic Settings Advanced Settings Config Block Mode	
	Analog Input 1 Block	
O usuário pode configurar o modo de operação do bloco.	Block Mode	
	Output Value 0,000 Status Bad & Non-specific +	
O usuário pode monitorar o parâmetro de saída e verificar o status atual do alarme.	Current Alarm Sum No Alarm	2
	Write	

Figura 3.11 - Configuração para o Bloco de Entrada Analógico - ProfibusView

Config Block Mode					
Select Block Mode]	Actual AUTO	8		¥
Output Value 0	mA	Status Uncer	tain, O/S initial	value	×
Current State Alarm Sum No A	llarm	A ¥			
Write	9				
					 Hale

Figura 3.12 - Configuração para o Bloco de Entrada Analógico - Simatic PDM

Como configurar o Bloco Totalizador

O Bloco Funcional Totalizador obtém os dados de entrada do bloco transdutor, selecionado por número de canal, e integra-o em função do tempo. Este bloco normalmente é usado para totalizar fluxo, dando a massa ou volume total no decorrer do tempo, ou totalizar a alimentação dando a energia total.

O Bloco Funcional Totalizador integra a variável (ex.: taxa de fluxo ou alimentação) em função da quantidade em tempo correspondente (Por exemplo: volume, massa ou distância). A unidade da taxa do Totalizador é fornecida pelo bloco transdutor. Internamente, as unidades de tempo são convertidas em unidades da taxa por segundo. Cada taxa multiplicada pelo tempo de execução do bloco dá a massa, o volume ou o incremento de energia por execução do bloco. O TOTAL é a quantidade totalizada. A unidade de engenharia usada na saída é a UNIT_TOT. Esta deve ser compatível com a unidade da entrada fornecida pelo transdutor através do canal. Portanto, se a taxa de entrada for o fluxo de massa (como Kg/s, g/min, ton/h) a unidade de saída deverá ser a massa (como kg, g, ton, lb, etc.). Para maiores detalhes, veja as especificações dos blocos funcionais.

Para configurar o Bloco Totalizador, selecione-o no menu principal. Usando a tela (figura 3.13), pode se configurar o modo de operação do bloco, selecionar o canal, o modo totalizador e a unidade do Totalizador. Pode se escolher até 3 Blocos Totalizadores:

			×
	Basic Settings Advanced Settin	ngs Config Block Mode	
	Totalizer 1 - Ba	nsic Settings	
O usuário pode	Block Mode		
ajustar o modo ——— do bloco.	Target	AUTO	•
	- Input		
O usuário pode escolher o valor	Channel	Disconnected	•
do canal.	- Totalizer Mode	Y	
	Mode	Positive values only	-
O usuário pode ajustar as	-Total Unit		
totalização e a unidade.	Unit	îts.	•
			Write Help

Figura 3.13 - Ajustes Básicos para o Bloco Totalizador - Profibus View

arget		VVrite	
Select I	nput		
hanne	I Disconnected	Write	
Select 7	Fotalizer Mode		
lode	Pos. and neg. values 💌	Write	
Select 7	Fotal Unit		
Jnit	m ³	Write	

Figura 3.14 - Ajustes Básicos para o Bloco Totalizador - Simatic PDM

Nesta tela, o usuário pode ajustar os limites de alarme e avisos, assim como as condições de falha segura (*fail-safe*):

				×
	Basic Settings	Advanced Settings	Config Block Made	
	Totaliz	er 1 - <mark>Adv</mark>	. Settings	
	A	larm/Warning Limi	ts	
Condições do alarme e limites		Upper Limit Alarm	100,000	_
de segurança.		Upper Limit Warning	100,000	-
	1	Lower Limit Alarm	0,000	
	1	Lower Limit Warning	0,000	
	30	Limit Hysteresis	0,4	
	F	ail Safe Values		
O usuário pode ajustar o valor do modo da falha	Fe	ill Safe Type	Hold	
"Memory".				
				Write Help

Figura 3.15 - Ajustes Avançados para o Bloco Totalizador- ProfibusView.

isic Settings Advanced	Settings Batch	Info	
Set Alarm/Warning Lir	nits	1	
Upper Limit Alarm	1.#INF	m³	Write
Upper Limit Warning	1.#INF	m³	
Lower Limit Alarm	0	m³	
Lower Limit Warning	0	m³	
Limit Hysteresis	0	m³	
-Set Fail Safe Values -			
Fail Safe Mode	Run		Write

Figura 3.16 - Ajustes Avançados para o Bloco Totalizador - Simatic PDM.

Na tela Config Block Mode, o u	suário pode ajusta	r a operação do bloco.
--------------------------------	--------------------	------------------------

	X
	Basic Settings Advanced Settings Config Block Mode
	Totalizer 1 - Block Mode
O usuário pode ajustar o modo de operação do bloco.	Block Mode Target AUTO Y Actual AUTO Y
O usuário pode	Output Value 0,000 Status Dad & Non-specific
de saída do totalizador e verificar o estado atual do alarme.	Current Alarm Sum Mo Alarm
	Write

Figura 3.17 - Configuração do Bloco Totalizador - ProfibusView.

nine configuration - rotalizer	- TOT-T Block Mode (Online)	
Config Block Mode		
Select Block Mode		
Target AUTO	Actual AUTO	
Totalizer Output		
Value 0	m ^a Status Bad, Value not accepted	<u>*</u>
Current State Alarm Sum No.	Alarm	
Writ	e	
44		
Close		Help

Figura 3.18 - Configuração do Bloco Totalizador - Simatic PDM

	Totalizer 1 - Pr	eset/Total	×
O usuário pode selecionar entre: "Totalize", "Reset" e "Preset" e entrar com o valor para a operação pré-definida. O usuário pode monitorar a saída do totalizador.	Preset Totalizer Set/Preset Total Preset Value Totalizer Output Value Status Ded & Non-specific	Totalize (520,000	White Felp

Figura 3.19 - Configuração Set/Preset para Bloco Totalizador - Profibus View

e Configuration - Lotaliz	er - TOT-1 Set/Preset Total (Online)	
t/Preset Total		
Set/Preset Totalizer		
Fotalizer Value totalize		
Preset Value 0		
Totalizer Output		
1.2		

Figura 3.20 - Configuração Set/Preset para Bloco Totalizador - Simatic PDM

Trim de Corrente

O **IF303** fornece a possibilidade de fazer um Trim da saída nos canais de entrada, se necessário. Um Trim é necessário se a leitura do indicador da saída do bloco transdutor diferir da saída física atual. As razões podem ser:

- O medidor de corrente do usuário difere do medidor padrão de fábrica.
- O conversor tem sua caracterização original deslocada por sobrecarga ou ao longo do tempo.

O usuário pode checar a calibração da saída do transdutor medindo a corrente na entrada e comparando-a com a indicação do conversor (use um medidor apropriado). Se houver uma diferença, um Trim pode ser feito.

O Trim pode ser feito em dois pontos:

Trim Inferior: É usado para ajustar o valor inferior da faixa de entrada. Trim Superior: É usado para ajustar o valor superior da faixa de entrada.

Estes dois pontos definem as características lineares da saída. O Trim em um ponto é independente do outro.

Existem, ao menos, duas formas de fazer um Trim: usando ajustes locais ou usando uma **Ferramenta de Configuração** (veja os exemplos abaixo usando **ProfibusView**). Ao fazer o Trim, certifique-se que está usando o medidor apropriado (com a precisão necessária).

Via ProfibusView, AssetView FDT ou Simatic PDM

O número do canal do bloco AI é relacionado ao número do terminal do bloco transdutor. Os números dos canais 1, 2, 3 correspondem bi-univicamente ao número do bloco do terminal com o mesmo número. Portanto, tudo que o usuário deve fazer é selecionar as combinações: (1, 1), (2, 2), (3, 3), para (CHANNEL, TERMINAL NUMBER).

É possível calibrar as entradas de correntes dos transmissores por meio dos parâmetros CAL_POINT_LO e CAL_POINT_HI.

Vamos tomar o valor inferior como exemplo: Alimente o bloco terminal com 4 mA ou com um valor inferior e aguarde até que a leitura do parâmetro PRIMARY_VALUE se estabilize.

Escreva 4.00 na tela ao lado de Lower Calibration Point ou o valor inferior. Para cada valor escrito é feita uma calibração no ponto desejado.

O usuário pode selecionar entre Trim superior e inferior	Lower Upper	X
inte non.	Transducer 1 Block	
O Limite inferior do sensor e o ponto de calibração inferior.	Lower Sensor Limit 100,000 Lower Calibration Point 0,000	
O valor e estado da corrente Resultado da operação.	Value 0,000 Status Good	<u>*</u>
		Write Hody

Figura 3.21 - Calibração para a Corrente Inferior IF303 - Profibus View.

iline)	
mA	
mA	
od	Y
-	
	ine) mA mA

Figura 3.22 - Calibração para a Corrente Inferior IF303 – Simatic PDM.

Considere o valor superior como exemplo: Alimente o bloco terminal com 20.00 mA ou com o valor superior e aguarde até que a leitura do parâmetro PRIMARY_VALUE se estabilize. Escreva 20.00 na tela ao lado de Upper Calibration Point ou o valor superior. Para cada valor escrito

é feita uma calibração no ponto desejado.

ransducer 1 Block
per Sensor Limit 100,000 per Calibration Point 50,000
Value 50,000 Status Good T
P

Inner Sensor Limit		mA	
pper Calibration Point 20		mA	
Current			
Value 19.99552]mA Status Good		<u>_</u>

Figura 3.24 - Calibração para a Corrente Superior IF303 - Simatic PDM.

ADVERTÊNCIA
É recomendável, para cada nova calibração, salvar previamente os dados ajustados existentes através do
parâmetro BACKUP_RESTORE, usando a opção "Last Cal Backup".

Adjustes Via Local

O IF303 possui 3 transdutores de entrada e é fornecido pela SMAR com ajustes de fábrica. Os ajustes de fábrica definem o transdutor número 1 como padrão para ajustes locais. Para configurar os outros via ajuste local, o usuário deverá antes configurá-los no transdutor do display via ferramenta de configuração de acordo com as instruções específicas para estes blocos transdutores trabalharem também com ajuste local.

Para entrar com o modo de ajuste local, posicione a chave magnética no orifício "Z" até "MD" aparecer no display. Remova a chave magnética de "Z" e posicione-a no orifício "S" até que apareca a mensagem "LOC ADJ". A mensagem será exibida por aproximadamente 5 segundos após a remoção da chave magnética de "S". Com a chave magnética o usuário poderá acessar a árvore de ajuste local no modo monitoração.

Procure o parâmetro P VAL (PRIMARY VALUE).

Alimente o bloco terminal com 4.0mA ou com o valor inferior e aquarde até que a leitura do bloco terminal se estabilize no display.

Procure o parâmetro "LOWER". Após isto, para iniciar a calibração, atue no parâmetro "LOWER" posicionando a chave magnética em "S" até obter 4.0.

Vamos pegar o valor superior:

Alimente o bloco terminal com 20.0mA ou com o valor superior e aguarde até que a leitura do parâmetro P VAL se estabilize e, então, execute o parâmetro UPPER até obter 20.0.

O modo Trim desaparece automaticamente via ajuste local guando a chave magnética não é usada por aproximadamente 16 segundos.

NOTA

Lembre-se que os parâmetros LOWER e UPPER devem ser atuados, mesmo apresentando o valor desejado, para que a calibração se realize.

Condições Limites para Calibração:

Para cada operação de escrita nos blocos transdutores existe um código de indicação para a operação associada ao método de escrita. Estes códigos aparecem no parâmetro XD ERROR toda vez que uma calibração é feita. O código 16, por exemplo, indica uma operação realizada com sucesso.

Inferior:

0.0mA < NEW_LOWER < 9.0mA Ou, XD_ERROR = 22

Superior:

15.0 mA < NEW_UPPER < 22.0mA Ou, XD_ERROR = 22.

NOTA

Códigos para XD ERROR: 16: Valor padrão 22: Fora de escala 26: Solicitação de Calibração Inválida

27: Correção Excessiva

Para auxiliar no processo de configuração, refira-se ao Guia Rápido - Árvore de Ajuste Local, pagina 3.29, neste manual.

Configuração do Transdutor do Display

Para Configurar o Bloco Transdutor do Display use o **ProfibusView, AssetView FDT, Simatic PDM ou qualquer outra ferramenta de configuração compatível**. O nome transdutor do display é assim denominado devido à interface de seu bloco com o hardware LCD.

O Transdutor do Display é tratado como um bloco normal por **qualquer ferramenta de configuração**. Isto significa que este bloco possui alguns parâmetros e, estes, podem ser configurados de acordo com as necessidades do cliente.

O cliente pode escolher até seis parâmetros a serem exibidos no indicador LCD. Eles podem ser parâmetros apenas para monitoração ou para atuação local nos equipamentos de campo usando a chave magnética. O sétimo parâmetro é usado para acessar o endereço físico do equipamento. O usuário pode modificar este endereço de acordo com sua aplicação. Para configurar o Bloco DIsplay, selecione-o no menu principal.

LCD-I LCD-II LCD-III LC Display Block	D-I¥ LCD-¥ LCD-¥I	X Address Toggle
Block Type Parameter Type/Index Parameter Element Mnemonic Decimal Step Decimal Point Place Access Permission Alpha/Numerical	None Temperature 1 Temp 0,1 2 Monitoring Mnemonic	
		Write Help

Figura 3.25 - Bloco Display - ProfibusView.

	CD-V LCD-VI Local Address Change		
Select Block Type	Transducer Block		Vrite
Select/Set Parameter Type/Index	Primary Value		
Set Mnemonic	P_VAL		
Set Decimal Step	0.25		
Set Decimal Point Place	2		
Select Access Permission	Monitoring		
Select Alpha/Numerical	Mnemonic	*	

Figura 3.26 - Bloco Display - Simatic PDM.

Bloco Transdutor do Display

O ajuste local é configurado completamente pela **ferramenta de configuração.** O usuário pode selecionar as melhores opções para sua aplicação. A configuração padrão (de fábrica) são as opções para os ajustes do Trim Superior e Inferior, para monitoração dos transdutores de entrada e de saída e para a verificação do Tag.

O conversor facilmente configurado pela **ferramenta de configuração**, mas a funcionalidade local do display de Cristal Líquido permite uma ação fácil e rápida de certos parâmetros, pois não depende da comunicação ou da rede. Dentre as possibilidades de Ajuste Local temos: Modo do bloco, Monitoramento da saída, Visualização do Tag e ajustes dos parâmetros de calibração.

A interface entre o usuário é descrita detalhadamente no "Manual de Procedimentos de Manutenção, Operação e Instalação Geral". Consulte o capítulo "Programação Usando Ajuste Local" neste manual. Os recursos do bloco display e também os equipamentos de campo da Série 303 possuem a mesma metodologia de manuseio. Uma vez aprendido, é possível manusear qualquer tipo de equipamento de campo da SMAR.

Todos os blocos de função e transdutores definidos de acordo com o PROFIBUS PA tem uma descrição de suas características escritas pelo DDL (*Device Description Language*).

Essa característica permite que outras ferramentas de configuração possam facilmente configurar os equipamentos de campo. Os blocos de função e os transdutores da série 303 foram rigorosamente definidos de acordo com as especificações da PROFIBUS PA para que sejam interoperáveis com outros fabricantes

Para habilitar o ajuste local usando a chave magnética é necessário preparar os parâmetros relacionados com esta operação via configuração do sistema.

Há seis grupos de parâmetros, os quais podem ser pré-configurados pelo usuário para habilitar uma possível configuração por ajuste local. Como exemplo, suponha que alguns parâmetros não devem ser mostrados; para este caso, selecione "None" no parâmetro "Select Block Type". Com isso, o equipamento não terá o parâmetro relacionado (indexado) a seu bloco como um parâmetro válido.

Definição de Parâmetros e Valores

Tipo de Bloco de Seleção

Este é o tipo de bloco onde o parâmetro é localizado. O usuário pode escolher: Bloco Transdutor (Transducer Block), Bloco Analógico de Entrada (Analog Input Block), Bloco Totalizador (Totalizer Block), Bloco Físico (Physical Block) ou Nenhum (None).

Selecionar/Ajustar Tipo de Parâmetro /Índice

Este é o índice relacionado ao parâmetro que será executado ou visualizado (0, 1, 2...). Para cada bloco existem alguns índices pré-definidos. Veja o Manual dos Blocos de Função para saber sobre os índices necessários e entre com o índice desejado.

Ajuste do Mnemônico

Este é o mnemônico para a identificação do parâmetro (aceita no máximo 16 caracteres no campo alfanumérico do display). Selecione o mnemônico com até 5 caracteres, preferencialmente, para que não seja necessário rotacioná-lo no display.

Ajuste do Passo Decimal

É o incremento e decremento em unidades decimais quando o parâmetro é um Float, Float Status Value ou Interger, quando o parâmetro está em unidades inteiras.

Ajuste do Ponto Decimal

É o número de dígitos após o número decimal (0 a 3 dígitos decimais).

Ajuste da Permissão de Acesso

O acesso permite que o usuário leia, em caso da opção "Monitoring" e grave quando a opção "action" for selecionada. Assim, o display irá mostrar as setas de incremento e decremento.

Ajuste Alfa Numérico

Estes parâmetros incluem duas opções: valor e mnemônico (Value e Mnemonic). Na opção valor (Value) é possível mostrar dados nos campos numérico e alfanumérico; desta forma, em um dado maior que 10000 será mostrado no campo alfanumérico. É útil quando está mostrando a totalização na interface LCD.

Na opção mnemônico (Mnemonic), o indicador pode mostrar os dados no campo numérico (Numeric) e o mnemônico (Menmonic) no campo alfanumérico.

NOTA Para equipamentos onde a versão do software é maior ou igual 1.10, veja o item Configuração usando Ajuste Local no manual de procedimentos de instalação, operação e manutenção.

Para visualizar um certo tag, escolha o índice relativo igual ao "tag". Para configurar outros parâmetros selecione as telas "LCD-II" a "LCD-VI":

LCD-I LCD-II LCD-III L	CD-IV LCD-V LCD-VI A	ddress Toggle	
Display Block			
Block Type Parameter Type/Index Parameter Element Mnemonic Decimal Step	Transducer Block 1 Temperature 1 Temp	× ×	
Decimal Point Place Access Permission Alpha/Numerical	2 Monitoring Memonic	•	A opção "Write" deve ser selecionada para a atualização da programação do ajuste local. Após
	[Write Help	este passo todos os parâm etros selecionados serão mostrados no indicador LCD.

Figura 3.27 - Parâmetros para Configuração do Ajuste Local - Profibus View.

Select Block Type	Transducer Block	<u> </u>	Write
elect/Set Parameter Type/Inde	x TAG	•	
Set Mnemonic	P_VAL		
let Decimal Step	0.25		
et Decimal Point Place	2		
elect Access Permission	Monitoring		
elect Alpha/Numerical	Mnemonic	•	

Figura 3.28 - Parâmetros para Configuração do Ajuste Local - Simatic PDM.

A tela abaixo permite alterar o endereço local (Local Address Change) e, também, permite que o usuário habilite/desabilite (Enable/Disable) o acesso à mudança do endereço físico do equipamento.

Figura 3.29 - Parâmetros para Configuração do Address - Profibus View.

line Configuration - Display (Online)	
.CD-I LCD-II LCD-III LCD-IV LCD-V LCD-VI Local Address Change	
Local Address Change Enable Write Disable Enable	

Figura 3.30 - Parâmetros para Configuração do Address - Simatic PDM

Quando o usuário está no ajuste local, através da chave magnética inserida no orifício do equipamento, ele pode percorrer e configurar todos os parâmetros de configuração disponíveis no ajuste local. Ao se remover a chave magnética do orifício o Display voltará a operação normal e indicará o parâmetro padrão P_VAL. Caso se deseje que outro valor seja mostrado, altere o respectivo parâmetro *"Access Permission"* para *"Monitoring"*. Quando a chave magnética for removida do orifício, o ultimo item com o parâmetro *Monitoring* ajustado será mostrado no Display.

Sempre no display são exibidos dois parâmetros por vez, alternando entre o parâmetro configurado e o último parâmetro de monitoração. Se não deseja exibir dois parâmetros ao mesmo tempo, basta optar por "none" ao configurar o LCD-II:

	Display Block		
velecionando None", este LCD erá ignorado na irvore de ajuste ocal.	Block Type Parameter Type/Index Parameter Element Mnemonic Decimal Step Decimal Point Place Access Permission Alpha/Numerical	None Temperature 1 Temp 0,1 2 Monitoring Mnemonic	

Figura 3.31 - Parâmetros para Configuração do LCD-II - ProfibusView.

Select Block Type	None		írite
Select/Set Parameter Type/Ind	ex Pressure (EU)	*	
Set Mnemonic	SECV1		
Set Decimal Step	0.25		
Set Decimal Point Place	2		
Select Access Permission	Monitoring		
Select Alpha/Numerical	Mnemonic	-	

Figura 3.32 - Parâmetros para Configuração do LCD-II - Simatic PDM

O usuário pode selecionar o parâmetro modo do bloco (Mode Block) no indicador LCD. Neste caso, é necessário selecionar o índice igual modo do bloco (Mode Block):

	Display Block		
esta opcão o metro modo do o é mostrado no	Block Type Parameter Type/Index Parameter Element Mnemonic Decimal Step Decimal Point Place Access Permission Alpha/Numerical	Transducer Block 1 Temperature 1 Temp 0,1 2 Monitoring Minemonic	

Figura 3.33 - Parâmetros para Configuração do Ajuste Local - Profibus View.

	.U-V LLU-VI Local Address Unange	
elect Block Type	Analog Input	Write
elect/Set Parameter Type/Index	Mode Block	
let Mnemonic	MODE	
et Decimal Step	0.25	
et Decimal Point Place	2	
elect Access Permission	Monitoring	
elect Alpha/Numerical	Mnemonic	

Figura 3.34 - Parâmetros para Configuração do Ajuste Local - Simatic PDM.

Programação Usando Ajuste Local

O ajuste local é completamente configurado pela **ferramenta de configuração**. Escolha as melhores opções para ajustar a sua aplicação. Na configuração padrão (de fábrica), o conversor é configurado

com as opções para ajustar o Trim Inferior e Superior, para monitorar a Entrada, a Saída do transdutor e configurar o Tag.

O conversor é configurado através da **ferramenta de configuração**, mas a funcionalidade do indicador (LCD) permite uma ação fácil e rápida em certos parâmetros, visto que não necessita da instalação das conexões da rede elétrica de comunicação. Pelo Ajuste Local pode-se enfatizar as seguintes opções: Modo do bloco, monitoração da saída, visualização do Tag e configuração dos Parâmetros de Sintonia.

A interface com o usuário é descrita com mais detalhes no " Manual Geral de Instalação, Operação e Manutenção ", veja o manual no capítulo relacionado a " Programação Usando Ajuste Local ". Todos os equipamentos de campo da Série 303 da SMAR apresentam a mesma metodologia para manusear os recursos do Transdutor do Display. Assim se o usuário aprender uma vez, ele é capaz de manusear todos os tipos de equipamento de campo da SMAR.

Esta configuração de ajuste local é apenas sugestão. Pode escolher sua configuração preferida via ferramenta de configuração, simplesmente, configurando o Bloco Display.

O conversor tem sob a plaqueta de identificação dois orifícios marcados com as letras **S** e **Z** ao seu lado, que dão acesso a duas chaves (*Reed Switch*), que podem ser ativadas ao inserir o cabo da chave magnética nos orifícios (Veja a Figura 3.35).

Figura 3.35 – Orifícios do Ajuste Local

A tabela 3.4 mostra o que as ações sobre os orifícios **Z** e **S** fazem no **IF303** quando o ajuste local está habilitado.

ORIFÍCIO	AÇÃO
Z	Inicializa e move entre as funções disponíveis.
S	Seleciona a função mostrada no indicador.

Tabela 3.4 – Função dos Orifícios sobre a Carcaça

Guia Rápido - Árvore de Ajuste Local

Conexão do Jumper J1

Se o jumper **J1** (veja a figura 3.36) estiver conectado nos pinos sob a palavra **ON** poderá ser simulado parâmetros, via parâmetros SIMULATE, dos blocos funcionais.

Conexão do Jumper W1

Se o jumper **W1** (veja a figura 3.36) estiver conectado em **ON**, habilitado para realizar as configurações, pode-se ajustar os mais importantes parâmetros dos blocos e a pré-configuração da comunicação.

Figura 3.37 - Passo 1 - IF303

mudar a flecha para baixo e insira e mantenha a chave no orifício S.

4.3 19.8 LOWER t UPPER

Figura 3.40 - Passo 4 - IF303

simplesmente insira a chave magnética no orifício S quando aparecer upper no display. Uma flecha apontando para cima () incrementará o valor e uma flecha apontando para baixo () decrementará o valor. Coloque 20.0 mA nos

Diagnósticos Cíclicos

Pode-se verificar os diagnósticos ciclicamente através de leituras via mestre Profibus-DP classe 1, assim como, aciclicamente, via mestre classe 2. Os equipamentos Profibus-PA disponibilizam 04 bytes padrões via Physical Block (vide figura 3.43 e figura 3.44) e quando o bit mais significativo do 4º. Byte for "1", estenderá o diagnóstico em mais 6 bytes. Estes bytes de diagnósticos também podem ser monitorados via ferramentas acíclicas.

				1	
Len of status bytes	Status Type	Physical Block Slot	Status Appears Disappears	Standard Diagnostic	Extended Diagnostic
08 - Standard Diag 0E - Ext Diag	FE	01	01 - Appears 02- Disappears	4 bytes	6 bytes vendor specific

When bit 55 (byte 4, MSB) is "1": the device has extended diagnostic

From Physical Block

Figura 3.43 – Diagnóstico Cíclicos

Figura 3.44 – Mapeamento dos Diagnósticos Cíclicos nos 4 bytes do Physical Block

Unit_Diag_bit está descrito no arquivo GSD do equipamento Profibus-PA.

A seguir vem parte da descrição de um arquivo GSD onde se tem os 4 bytes em detalhes:

;----- Description of device related diagnosis: ------

Unit_Diag_Bit(16)	= "Error appears"
Unit_Diag_Bit(17)	= "Error disappears"
;	
;Byte 01	
Unit_Diag_Bit(24)	= "Hardware failure electronics"
Unit_Diag_Bit(25)	= Not used 25
Unit_Diag_Bit(26)	= Not used 26
Unit_Diag_Bit(27)	= Not used 27
Unit_Diag_Bit(20)	= Wennory enfor
Unit_Diag_Dit(29)	= Measurement failure
Unit_Diag_Bit(30)	= Device not initialized
·Bute 02	
Unit Diag Bit(32)	- "Not used 32"
Unit_Diag_Bit(32)	- "Not used 33"
Unit Diag Bit(34)	= "Configuration invalid"
Unit Diag Bit(35)	= "Restart"
Unit Diag Bit(36)	= "Coldstart"
Unit Diag Bit(37)	= "Maintenance required"
Unit Diag Bit(38)	= "Characteristics invalid"
Unit Diag Bit(39)	= "Ident Number violation"
;Byte 03	
Unit_Diag_Bit(40)	= "Not used 40"
Unit_Diag_Bit(41)	= "Not used 41"
Unit_Diag_Bit(42)	= "Not used 42"
Unit_Diag_Bit(43)	= "Not used 43"
Unit_Diag_Bit(44)	= "Not used 44"
Unit_Diag_Bit(45)	= "Not used 45"
Unit_Diag_Bit(46)	= "Not used 46"
Unit_Diag_Bit(47)	= "Not used 47"
;byte 04	
Unit_Diag_Bit(48)	= "Not used 48"
Unit_Diag_Bit(49)	= "Not used 49"
Unit_Diag_Bit(50)	= "Not used 50"
Unit_Diag_Bit(51)	= "Not used 51"

Unit Diag Bit(52) = "Not used 52" Unit Diag Bit(53) = "Not used 53" Unit_Diag_Bit(54) = "Not used 54" Unit_Diag_Bit(55) = "Extension Available" ;Byte 05 TRD Block & PHY Block Unit Diag Bit(56) = "TRD Block 1 Sensor Failure" Unit_Diag_Bit(57) = "TRD Block 2 Sensor Failure" Unit_Diag_Bit(58) = "TRD Block 3 Sensor Failure" Unit_Diag_Bit(59) = "TRD Block 1 Range Violation" Unit_Diag_Bit(60) = "TRD Block 2 Range Violation" Unit_Diag_Bit(61) = "TRD Block 3 Range Violation" Unit_Diag_Bit(62) = "Calibration Error - Check XD_ERROR parameter for TRD 1 or TRD 2 or TRD 3" Unit Diag Bit(63) = "Device is in Writing Lock" :byte 06 AI 1 Block Unit_Diag_Bit(64) = "Simulation Active in Al 1 Block" Unit_Diag_Bit(65) = "Fail Safe Active in AI 1 Block" Unit_Diag_Bit(66) = "AI 1 Block in Out of Service" Unit_Diag_Bit(67) = "AI 1 Block Output out of High limit" Unit_Diag_Bit(68) = "AI 1 Block Output out of Low limit" Unit_Diag_Bit(69) = "Not used 69" Unit_Diag_Bit(70) = "Not used 70" Unit Diag Bit(71) = "Not used 71" :byte 07 AI 2 Block Unit_Diag_Bit(72) = "Simulation Active in AI 2 Block" Unit_Diag_Bit(73) = "Fail Safe Active in AI 2 Block" Unit_Diag_Bit(74) = "AI 2 Block in Out of Service" Unit Diag Bit(75) = "AI 2 Block Output out of High limit" Unit Diag Bit(76) = "AI 2 Block Output out of Low limit" Unit_Diag_Bit(77) = "Not used 77" Unit_Diag_Bit(78) = "Not used 78" Unit_Diag_Bit(79) = "Not used 79" :byte 08 AI 3 Block Unit Diag Bit(80) = "Simulation Active in AI 3 Block" Unit Diag Bit(81) = "Fail Safe Active in AI 3 Block" Unit Diag Bit(82) = "AI 3 Block in Out of Service" Unit_Diag_Bit(83) = "AI 3 Block Output out of High limit" Unit_Diag_Bit(84) = "AI 3 Block Output out of Low limit" Unit_Diag_Bit(85) = "Not used 85" Unit_Diag_Bit(86) = "Not used 86" Unit_Diag_Bit(87) = "Not used 87" ;byte 09 TOT Block Unit_Diag_Bit(88) = "TOT Block 1 in Out of Service" Unit_Diag_Bit(89) = "Totalization 1 Out of High limit" Unit_Diag_Bit(90) = "Totalization 1 Out of Low limit" Unit_Diag_Bit(91) = "No assigned channel to TOT Block 1" Unit_Diag_Bit(92) = "TRD Block 1 - Square Root function is active" Unit Diag Bit(93) = "TOT Block 2 in Out of Service" Unit_Diag_Bit(94) = "Totalization 2 Out of High limit" Unit_Diag_Bit(95) = "Totalization 2 Out of Low limit" ;byte 10 Unit_Diag_Bit(96) = "No assigned channel to TOT Block 2" Unit_Diag_Bit(97) = "TRD Block 2 - Square Root function is active" Unit_Diag_Bit(98) = "TOT Block 3 in Out of Service" Unit Diag Bit(99) = "Totalization 3 Out of High limit" Unit_Diag_Bit(100) = "Totalization 3 Out of Low limit" Unit Diag Bit(101) = "No assigned channel to TOT Block 3" Unit_Diag_Bit(102) = "TRD Block 3 - Square Root function is active" Unit_Diag_Bit(103) = "Not used 103"

ΝΟΤΑ

Se o flag FIX estiver ativo no LCD, o **IF303** está configurado para "*Profile Specific*". Quando em "*Manufacturer Specific*", o *Identifier Number* é 0x0896. Uma vez alterado de "*Profile Specific*" para "Manufacturer Specific", deve-se esperar 5 segundos e desligar e ligar o equipamento para que o cujo Identifier Number seja atualizado no nível de comunicação. Se o equipamento estiver em "Profile Specific" e com o arquivo GSD usando Identifier Number igual a 0x0896, haverá comunicação acíclica, isto com ferramentas baseadas em EDDL, FDT/DTM, mas não haverá comunicação cíclica com o mestre Profibus-DP.

PROCEDIMENTO DE MANUTENÇÃO

Geral

			NUTA					
Equipamentos instalados NBR/IEC60079-17.	em	Atmosferas	Explosivas	devem	ser	inspecionados	conforme	norma

Os conversores de Corrente para PROFIBUS PA Smar **IF303** são testados e inspecionados antes da entrega ao usuário final. Entretanto, durante seu projeto e desenvolvimento, foi considerada a possibilidade de reparos pelo usuário, se necessário.

Em geral, é recomendado que o usuário não tente consertar as placas de circuito impresso. O usuário deverá ter placas de circuitos impresso sobressalente, as quais podem ser pedidas à SMAR quando necessário.

A tabela a seguir mostra os prováveis erros e as ações corretivas correspondentes a elas.

SINTOMA	PROVÁVEL CAUSA DO PROBLEMA			
	Conexões do Conversor PROFIBUS Verifique a polaridade e a continuidade da fiação.			
Sem Corrente Quiescente	Fonte de Alimentação Verifique a saída da fonte de alimentação. A tensão nos terminais do IF303 deve estar entre 9 e 32 Vdc.			
	Falha do circuito Eletrônico Verifique se há defeitos nas placas substituindo-as pelas sobressalentes.			
	Conexões de Rede Verifique as conexões da rede: equipamentos, fontes de alimentação, acopladores, links e terminadores.			
Sem Comunicação	Configuração do Conversor Verifique a configuração dos parâmetros de comunicação do conversor.			
	Configuração da Rede Verifique a configuração da rede.			
	Falha do Circuito Eletrônico Substitua o circuito por sobressalentes.			
	Conexão dos Terminais de Entrada Verifique a polaridade e a continuidade da fiação.			
Entrada Incorreta	Transmissor Convencional Verificar se o transmissor convencional está funcionando corretamente ou se possui a tensão necessária. Lembre-se que o IF303 possui uma impedância de entrada de 100 Ohms com 0,8 V.			
	Calibração Verifique a calibração do IF303 e os transmissores convencionais.			

Se o problema não apresenta na tabela acima faça o que diz a nota abaixo.

ΝΟΤΑ
O factory Init deve ser realizado como última opção para recuperar o controle sobre o equipamento quando este apresentar algum problema relacionado a blocos funcionais ou a comunicação. Esta operação só deve ser feita por pessoal técnico autorizado e com o processo em offline, uma vez que o equipamento será configurado com dados padrões e de fábrica.
Este procedimento reseta todas as configurações realizadas no equipamento, com exceção do endereço físico do equipamento e do parâmentro gsd identifier number selector. Após realizar o Factory Init refaça todas as configurações novamente, pertinentes à aplicação.
Para fazer o factory Init é necessário duas chaves de fendas magnéticas. No equipamento, retire o parafuso que fixa a plaqueta de identificação no topo da carcaça para acessar os furos marcados pelas letras "S" e "Z".
As operações a serem realizadas são:
 Desligue o equipamento, insira as chaves magnéticas em cada furo (S e Z). Deixe-as nos furos; Alimente o equipamento; Assim que o display mostrar factory Init, retire as chaves e espere o símbolo "5" no canto superior direito do display apagar, indicando o fim da operação.
Esta operação traz toda a configuração de fábrica e elimina os eventuais problemas que possam ocorrer com os blocos funcionais ou com a comunicação do transmissor.

Procedimento de Desmontagem

Veja a figura 4.1 – Vista Explodida do IF303. Certifique-se que a fonte de alimentação esteja desconectada antes de desmontar o conversor.

Para remover as placas de circuito impresso (5 e 7) e o display (4), primeiro solte o parafuso de trava da tampa (8) no lado que não estiver marcado "Field Terminals" e a seguir desaparafuse a tampa (1).

ADVERTÊNCIA

A placa tem componentes CMOS, os quais podem ser danificados por descargas eletrostáticas. Use os procedimentos corretos para o manuseio dos componentes CMOS. As placas devem ser armazenadas em estojos a prova de cargas eletrostática.

Libere os dois parafusos (3) que seguram o display e a placa principal. Puxe cuidadosamente o indicador e a placa (5). Para remover a placa de entrada (7), libere os dois parafusos (6) que a prende à Carcaça (9) e cuidadosamente retire a placa.

Procedimento de Montagem

- Posicione a placa (7) na Carcaça (9);
- Use os parafusos (6) para prender a placa de entrada;
- Posicione a placa principal (5) dentro da carcaça, certificando-se que os pinos estão conectados;
- Prenda a placa principal e o display com seus parafusos (3);
- Aparafuse a tampa (1) e prenda-a usando o parafuso de trava (8).

Intercambiabilidade de Placas

As placas Principal e de Entrada são casadas, pois os dados de calibração da placa de Entrada são armazenados na EEPROM da placa Principal.

ADVERTÊNCIA
Se, por alguma razão, as placas de Entrada e Principal forem separadas é necessário fazer um Trim para garantir a precisão das entradas. Com placas incompatíveis, o trim de fábrica não será tão bom quanto aquele com as placas casadas.

Vista Explodida

Figura 4.1 - IF303 Vista Explodida

Acessórios e Produtos Relacionados

ACESSÓRIOS E PRODUTOS RELACIONADOS			
Código de Pedido	Descrição		
AssetView FDT	Ferramenta Gerencial de Equipamentos de Campo		
BT302	Terminador		
DF47-17	Barreira de Segurança Intrínseca		
DF73	Controlador HSE/PROFIBUS DP		
DF95/DF97	Controlador PROFIBUS DP/PA		
FDI302	Interface de Equipamento de Campo		
PBI	Interface Profibus/USB		
ProfibusView	Software de parametrização de equipamentos PROFIBUS PA		
PS302/DF52	Fonte de Alimentação		
PSI302/DF53	Impedância para Fonte de Alimentação		
SD1	Ferramenta Magnética para Ajuste Local		

Relação das Peças Sobressalentes

RELAÇÃO DAS PEÇAS SOBRESSALENTES						
DESCRIÇÃO DAS PE	ÇAS	POSIÇÃO	CÓDIGO	CATEGORIA (NOTA 4)		
Tampa SEM Visor (Anal O ring Induse)	Alumínio	1 e 15	204-0102			
rampa SEM VISOR (Aner O-ning Incluso)	Aço Inox 316	1 e 15	204-0105			
Tampa COM Vigar (Apol O ring Ipolygo)	Alumínio	1	204-0103			
rampa COW visor (Aner O-ning Incluso)	Aço Inox 316	1	204-0106			
Anel de Vedação (NOTA 2)	Tampa, Buna-N	2	204-0122	В		
Parafuso da Placa Principal para Carcaça em	Para Unidades Com Indicador	3	304-0118			
Alumínio	Para Unidades Sem Indicador	3	304-0117			
Parafuso da Placa Principal para Carcaça em Aço	Para Unidades Com Indicador	3	204-0118			
Inox 316	Para Unidades Sem Indicador	3	204-0117			
Indicador Digital		4	(NOTA 5)			
Placa Principal e Placa de Entrada (Casadas)		5 e 7	(NOTA 5)	А		
Paratuas de Plass de Entrado	Carcaça em Alumínio	6	314-0125			
Paraluso da Placa de Entrada	Carcaça em Aço Inox 316	6	214-0125			
Parafuso de Trava da Tampa		8	204-0120			
	1/2 - 14 NPT	9	400-0305			
Carcaça, Alumínio (NOTA 1)	M20 x 1.5	9	400-0306			
	PG 13.5 DIN	9	400-0307			
	1/2 - 14 NPT	9	400-0308			
Carcaça, Aço Inox 316 (NOTA 1)	M20 x 1.5	9	400-0309			
	PG 13.5 DIN	9	400-0310			
Capa de Proteção do Ajuste Local		10	204-0114			
Parafuso da Plaqueta de Identificação		11	204-0116			
Isolador da Borneira		12	314-0123			
Parafuso de Aterramento Externo		13	204-0124			
Paratusa da Fixação da Isalador da Bornaira	Carcaça em Alumínio	14	304-0119			
Falaluso de Fixação do Isolador da Bolheira	Carcaça em Aço Inox 316	14	204-0119			
Buião Sextavado Interno 1/2" NPT BR Ex d	Aço Carbono Bicromatizado	16	400-0808			
Bujao Sexiavado Interno 1/2 INFT BR EX u	Aço Inox 304	16	400-0809			
Buião Sextavado Interno 1/2" NPT	Aço Carbono Bicromatizado	16	400-0583-11			
	Aço Inox 304	16	400-0583-12			
Bujão Sextavado Externo M20 X 1.5 BR Ex d	Aço Inox 316	16	400-0810			
Bujão Sextavado Externo PG13.5	Aço Inox 316	16	400-0811			
	Aço Carbono	-	214-0801			
	Aço Inox 316	-	214-0802			
Suporte de Montagem para Tubo de 2" (NOTA 3)	Grampo-U em Aço Carbono, Parafusos, Porcas e Arruelas em Aço Inox 316	-	214-0803			

ΝΟΤΑ

1 - Inclui o isolador dos terminais, parafusos (trava da tampa, aterramento e isolador de terminais) e plaquetas de identificação sem certificação.

2 - Os anéis de vedação são embalados em pacotes de 12 unidades.3 - Inclui grampo-U, porcas, parafusos e arruelas sobressalentes.

4 - Na categoria "A" recomenda-se manter em estoque um conjunto para cada 25 peças instaladas e na categoria "B" um conjunto para cada 50 peças instaladas.

5 - Acessar https://www.smar.com.br/pt/suporte, em suporte geral, procurar nota de compatibilidade e consulte o documento.

Teste de isolamento em carcaças

- 1. Desenergizar o instrumento em campo, remover sua tampa traseira e desconectar todos os cabos de campo da borneira do transmissor, isolando-os com segurança.
- 2. Não é necessário remover a placa principal e display.
- 3. Jumpear (conectar) os terminais de alimentação (positivo e negativo) com cabo nu proveniente do megômetro. No caso dos conversores IF303, jumpear também todos os conectores com o mesmo cabo. Nestes instrumentos, além dos bornes de alimentação, existem os bornes dos sensores. Todos estes bornes devem ser conectados para aplicação de tensão em relação a carcaça.
- 4. Configurar o megômetro para escala 500 Vdc e verificar o isolamento entre a carcaça e o cabo nu que curto-circuita todos os terminais.

- O valor obtido deverá ser maior ou igual a 2GΩ e o tempo de aplicação da tensão deve ser de no mínimo 1 segundo e no máximo 5 segundos.
- 6. Caso o valor obtido pelo megômetro estiver abaixo de 2GΩ, deve ser analisada a possibilidade de entrada de umidade no compartimento de conexão elétrica.
- 7. É possível soltar os dois parafusos que prendem a borneira à carcaça e fazer uma limpeza superficial e secar bem a superfície. Posteriormente, o isolamento pode ser testado novamente.
- 8. Se mesmo assim o teste de isolamento continuar mostrando que a isolação foi comprometida, a carcaça deve ser substituída e encaminhada à Nova Smar S.A. para análise e recuperação.

IMPORTANTE

Para instrumentos certificados Exd e Exi (Prova de Explosão e Intrinsecamente Seguro) as normas orientam a não fazer reparos em campo dos componentes eletrônicos da carcaça, apenas na Nova Smar S.A.

Em utilização normal, os componentes da carcaça não devem causar falhas que afetem o isolamento da carcaça. Por isto é importante avaliar se há vestígios de entrada de água na carcaça e, em caso positivo, uma avaliação nas instalações elétricas e nos anéis de vedação das tampas deve ser feita. A Nova Smar S.A. tem uma equipe pronta para apoiar a avaliação das instalações, caso seja necessário.

CARACTERÍSTICAS TÉCNICAS

	Especificações Funcionais				
Sinal de Entrada (Valores de Campo)	0-20 mA, 4-20 mA ou qualquer outro entre 0 e 20 mA. Protegido contra polaridade reversa (1)				
Sinal de Saída	PROFIBUS PA, somente digital e de acordo com IEC 61158-2 (H1): 31,25 kbit/s e modo de				
(Comunicação)	voltagem com alimentação pelo barramento.				
Impedância de Entrada	Resistiva 100, mais 0,8 V de queda no diodo de proteção.				
Fonte de Alimentação	Alimentação pelo barramento 9 - 32 Vdc. Corrente de consumo guiescente 12 mA.				
Indicador	Indicador LCD de 41/2 dígitos.				
Certificação em Áreas Classificadas (Veja Apêndice "A")	A prova de explosão e intrinsicamente seguro (ATEX (NEMKO e DEKRA EXAM), FM, CEPEL, CSA e NEPSI). Projetado para atender as Diretivas Europeias (Diretiva ATEX 94/9/EC e Diretiva LVD 2006/95/EC)				
Limites de Temperatura	Operação: -40 a 85 °C (-40 a 185 °F) -40 a 120 °C (-40 a 250 °F) Armazenamento: -10 a 60 °C (14 a 140 °F) operação Display: -40 a 85 °C (-40 a 185 °F) sem danos.				
Limites de Umidade	0 a 100% RH.				
Tempo para início de operação	Aproximadamente 10 segundos.				
Tempo de Atualização	Aproximadamente 0,5 segundo.				
Configuração	A configuração básica pode ser feita usando ajustes locais usando a ferramenta magnética, se o equipamento possui display. A configuração completa é possível usando um PC com um software configurador (Ex: ProfiibusView, AssetView FDT ou Simatic PDM) e uma interface.				
Especificações de Desempenho					
Precisão	0,03%. do span para 4-20 mA, 5 μA para outros spans.				
Efeito de Temperatura Ambiente	Para uma variação de 10 °C: ± 0.05%.				
Efeito de Vibração	Atende a norma SAMA PMC 31.1.				
Efeito de interferência eletromagnética	Projetado para atender a Diretiva Europeia - Diretiva EMC 2004/108/EC.				
Especificações Físicas					
Conexão Elétrica	1/2-14 NPT, PG 13.5 ou M20 x 1.5.				
Material de Construção	Alumínio injetado com baixo teor de cobre e acabamento com tinta poliéster ou aço inox 316, com anéis de vedação de Buna N nas tampas.				
Montagem	Com um suporte opcional, pode ser instalado em um tubo de 2" fixado na parede ou no painel.				
Pesos	Sem indicador e suporte de montagem: 0,80 kg. Somar para o display digital: 0,13 kg. Somar para o suporte de montagem: 0,60 kg.				

NOTA

Aplique nas entradas do conversor somente níveis de corrente. Não aplique níveis de tensão, pois os resistores de shunt é de 100 R 1 W e tensão acima de 10 Vdc podem danificá-los.

Código de Pedido

MODELO								
IF303	CONVERSOR DE CO	RRENTE PARA PROFIBUS COM 3 CANAIS						
	COD. Indicador Loca							
	0 Sem Indicador	ticital						
	0 Sem sup	orte						
	1 Em Aco Carbono, Acessórios: Aco Carbono							
	2 Em Aço Carbono. Acessórios: Al316							
	7 Em Aço Inix 310. Acessórios: Al316							
	COD. C	onexão Elétrica						
	0 1/	/2" - 14 NPT						
	1/2" - 14 NPT X 3/4 NPT (AI 316) - com adaptador							
	2 1/	/2" - 14 NPT X 3/4 BSP (AI 316) - com adaptador						
	3 1/	/2" - 14 NPT X 1/2 BSP (AI 316) - com adaptador						
	AN	I20 X 1.5						
	BP	G 13.5 DIN						
	C							
		H2 Alumínio para atmosfera salina //DW/TVRE X)						
		H3 Aco Inov 316 para atmosfera salina (IPW/TYPE X)						
		COD Plaqueta de Identificação						
		11 FM: XP. IS. NI. DI						
		I3 CSA: XP, IS, NI, DI						
		I4 EXAM (DMT): Ex-ia; NEMKO: Ex-d						
	I5 CEPEL: Ex-d, Ex-ia							
	I6 Sem Certificação							
		IE NEPSI: Ex-ia						
		COD. Pintura						
		P0 Cinza Munsell N 6,5 Poliéster						
		P3 Poliéster Preto						
		P4 Epóxi Branco						
		P5 Poliéster Amarelo						
		P8 Sem Pintura						
		P9 Epoxi Azul Segurança - Pintura Eletrostatica						
		PC Pollestel Azul Segurança - Pintula Eletrostatica						
		COD Sinal de Entrada						
		T0 3 entradas de 4 a 20 mA						
		COD. Plagueta de TAG						
		J0 Plaqueta com TAG						
		J1 Plaqueta de TAG sem inscrição						
		J2 Plaqueta de TAG conforme notas						
		COD. Especial						
		ZZ Ver notas						
IF303	1 1 0	* * * * * MODELO TÍPICO						

* Deixe em branco para nenhum item opcional.

INFORMAÇÕES SOBRE CERTIFICAÇÕES

Informações sobre Diretivas Europeias

Consultar www.smar.com.br para declarações de Conformidade EC e certificados.

Representante autorizado na comunidade europeia

Smar Europe BV De Oude Wereld 116 2408 TM Alphen aan den Rijn Netherlands

Diretiva ATEX 2014/34//EU – "Equipamentos para Atmosferas Explosivas "

O certificado de tipo EC é realizado pelo DNV Product Assurance AS (NB 2460) e DEKRA Testing and Certification GmbH (NB 0158).

O organismo de certificação que monitora a fabricação e realiza o QAN (Notificação de Garantia da Qualidade) é a UL International Demko AS (NB 0539).

Diretiva LVD 2014/35/EU - "Baixa Tensão"

De acordo com a LVD anexo II, os equipamentos elétricos certificados para uso em Atmosferas Explosivas, estão fora do escopo desta diretiva.

De acordo com a norma IEC: IEC 61010-1 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements.

Diretiva ROHS 2011/65/EU - "Restrição do uso de certas substâncias perigosas em equipamentos elétricos e eletrônicos"

Para a avaliação dos produtos a seguinte norma foi consultada: EN IEC 63000.

Diretiva EMC 2014/30/EU - "Compatibilidade Eletromagnética"

Para avaliação do produto a norma IEC61326-1 foi consultada e para estar de acordo com a diretiva de EMC, a instalação deve seguir as seguintes condições especiais: Utilize um cabo blindado de par trançado para alimentar o equipamento e a fiação do sinal.

Mantenha a proteção isolada do lado do equipamento, conectando o outro lado ao terra.

Informações Gerais sobre Áreas Classificadas

Normas Ex:

IEC 60079-0 Requisitos Gerais

IEC 60079-1 Proteção de equipamento por invólucro à prova de explosão "d"

IEC 60079-7 Proteção de equipamento por segurança aumentada "e"

IEC 60079-11 Proteção de equipamento por segurança intrínseca "i"

IEC 60079-18 Proteção de equipamento por encapsulamento "m"

IEC 60079-26 Equipamentos com elementos de separação ou níveis de proteção combinados

IEC 60079-31 Proteção de equipamento contra ignição de poeira por invólucros "t"

IEC 60529 Graus de proteção providos por invólucros (Códigos IP)

IEC 60079-10 Classificação de áreas - Atmosferas explosivas de gás

IEC 60079-14 Projeto, seleção e montagem de instalações elétricas

IEC 60079-17 Inspeção e manutenção de instalações elétricas

IEC 60079-19 Reparo, revisão e recuperação de equipamentos

ISO/IEC 80079-34 Aplicação de sistemas de gestão da qualidade para a fabricação de produtos "Ex"

Atenção:

Explosões podem resultar em morte ou lesões graves, além de prejuízo financeiro.

A instalação deste equipamento em atmosferas explosivas deve estar de acordo com as normas nacionais e com o tipo de proteção. Antes de fazer a instalação verifique se os parâmetros do certificado estão de acordo com a classificação da área.

Manutenção e Reparo

A modificação do equipamento ou troca de partes fornecidas por qualquer fornecedor não autorizado pela Smar é proibida e invalidará a certificação.

Plaqueta de marcação

O equipamento é marcado com opções de tipos de proteção. A certificação é válida apenas quando o tipo de proteção é indicado pelo usuário. Quando um tipo de proteção está instalado, não o reinstalar usando quaisquer outros tipos de proteção.

Aplicações Segurança Intrínseca/Não Acendível

Ligue o equipamento com o tipo de proteção "Segurança intrínseca" apenas a um circuito

intrinsecamente seguro. Se o equipamento já tiver sido utilizado em circuitos não intrinsecamente

seguros ou se as especificações elétricas não tiverem sido respeitadas, a segurança do equipamento deixa de estar garantida para instalações de "Segurança Intrínseca".

Em atmosferas explosivas com requisitos de segurança intrínseca ou não acendível, os parâmetros de entrada do circuito e os procedimentos de instalação aplicáveis devem ser observados.

O equipamento deve ser conectado a uma barreira de segurança intrínseca adequada. Verifique os parâmetros intrinsecamente seguros envolvendo a barreira e o equipamento incluindo cabos e conexões. O aterramento do barramento dos instrumentos associados deve ser isolado dos painéis e suportes das carcaças. Cabo blindado é opcional, quando usar cabo blindado, isolar a extremidade não aterrada do cabo.

A capacitância e a indutância do cabo mais Ci e Li devem ser menores que Co e Lo do equipamento associado. É recomendado não remover a tampa do invólucro quando energizado.

Aplicações a Prova de Explosão/Prova de Chamas

Utilizar apenas conectores, adaptadores e prensa cabos certificados a prova de explosão/prova de chamas. As entradas das conexões elétricas devem ser conectadas através de conduites com unidades seladoras ou fechadas utilizando prensa cabo ou bujão metálicos com no mínimo IP66. Não remover a tampa do invólucro guando energizado.

Invólucro

A instalação do sensor e invólucro em atmosferas explosivas deve ter no mínimo 6 voltas de rosca completas. A tampa deve ser apertada com no mínimo 8 voltas de rosca para evitar a penetração de umidade ou gases corrosivos até que encoste no invólucro. Então, aperte mais 1/3 de volta (120º) para garantir a vedação. Trave as tampas utilizando o parafuso de travamento.

O invólucro contém alumínio e é considerado um risco potencial de ignição por impacto ou fricção. Deve-se tomar cuidado durante a instalação e uso para evitar impacto ou fricção.

Grau de Proteção do Invólucro (IP)

IPx8: o segundo numeral significa imerso continuamente na água em condição especial definida como 10m por um período de 24 horas. (Ref: IEC60529).

IPW/TypeX: a letra suplementar W ou X significa condição especial definida como testado em ambiente salino em solução saturada a 5% de NaCl p/p por um período de 200 horas a 35°C.

Para aplicações de invólucros com IP/IPW/TypeX, todas as roscas NPT devem aplicar vedante a prova d'agua apropriado (vedante de silicone não endurecível é recomendado).

Certificações para Áreas Classificadas

FM Approvals

FM 0D7A9.AX IS Class I, II, III Division 1, Groups A, B, C and D, E, F, G XP Class I, Division 1, Groups A, B, C, D DIP Class II, III Division 1, Groups E, F, G NI Class I, Division 2, Groups A, B, C, D T4; Ta = -25° C < Ta < 60° C; Type 4, 4X, 6

Entity Parameters Fieldbus Power Supply Input (report 3015629): Vmax = 24 Vdc, Imax = 250 mA, Pi = 1.2 W, Ci = 5 nF, Li = 12 uH Vmax = 16 Vdc, Imax = 250 mA, Pi = 2 W, Ci = 5 nF, Li = 12 uH 4-20 mA Current Loop: Vmax = 30 Vdc, Imax = 110 mA, Pi = 0,825 W, Ci = 5 nF, Li = 12 uH

Drawing 102A-0081, 102A-1211, 102A-1334, 102A-1628, 102A-1629

ATEX DNV

Explosion Proof (PRESAFE 20 75160X) Il 2G Ex db IIC T6 Gb Ambient Temperature: -20 °C to +60 °C Options: IP66W/68W or IP66/68

Special conditions for safe use: Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 1 and 2 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: EN IEC 60079-0:2018 General Requirements EN 60079-1:2014 Flameproof Enclosures "d"

Drawing 102A-1417, 102A-1499

IECEX DNV

Explosion Proof (IECEx DNV 21.0090X) Ex db IIC T6 Gb Ambient Temperature: -20 °C to +60 °C Options: IP66/68W or IP66/68

Special Conditions for Safe Use Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 1 and 2 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: IEC 60079-0:2017 General Requirements IEC 60079-1:2014-06 Equipment protection by flameproof enclosures "d"

Drawing 102A-2196, 102A-2197

DEKRA

Intrinsic Safety (DMT 00 ATEX E 064) I M2 Ex ia I Mb II 2G Ex ia IIC T4/T5/T6 Gb

Supply circuit for the connection to an intrinsically safe FISCO fieldbus-circuit: Ui = 24Vdc, Ii = 380 mA, Pi = 5.32 W, Ci ≤ 5 nF, Li = neg Parameters of the supply circuit comply with FISCO model according to Annex G EN 60079-11:2012, replacing EN 60079-27: 2008.

Input-signal-circuits: three 0-20 mA or 4-20 mA signal inputs with common ground Input impedance (load impedance) Ri 100 Ω Effective internal capacitance Ci negligible Effective internal inductance Li negligible

IF303 – Informações sobre Certificações

Safety relevant maximum values for certified intrinsically safe 0-20 mA or 4-20 mA signal circuits as a function of ambient temperature and temperature class

Max. Ambient	Temperature	Voltage	Current li	Power Pi	
temperature Ta	Class	DC Ui			
60°C	T4	28 V	93 mA	750 mW	
50°C	T5	28 V	93 mA	750 mW	
40°C	T6	28 V	93 mA	570 mW	

The signal inputs are safely galvanically separated from the fieldbus circuit. Ambient Temperature: $-40^{\circ}C \le Ta \le +60^{\circ}C$

The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2012 + A11:2013 General Requirements EN 60079-11:2012 Intrinsic Safety "i"

Drawing 102A-1417, 102A-1499, 102A-1418, 102A-1500

INMETRO NCC

Segurança Intrínseca (NCC 24.0169X) Equipamento de campo FISCO Ex ia IIC T* Ga Ex ia IIIC T* Da Ui = $30 \vee Ii = 380 \text{ mA } Pi = 5,32 \vee Ci = 5,0 \text{ nF } Li = desp$ Tamb: -20 °C a +50 °C para T5 ou T₂₀₀100 °C Tamb: -20 °C a +65 °C para T4 ou T₂₀₀135 °C IP66/68 ou IP66/68W

Prova de Explosão (NCC 24.0144) Ex db IIC T6 Gb Ex tb IIIC T85 °C Db Tamb: -20 °C a +40 °C IP66/68 ou IP66/68W

Observações:

O número do certificado é finalizado pela letra "X" para indicar que para a versão do Conversor de Corrente para Protocolo FIELDBUS/PROFIBUS PA, modelos IF302 e IF303 equipado com invólucro fabricado em liga de alumínio, somente pode ser instalado em localização que exigem o "EPL Ga", se durante a instalação for excluído o risco de ocorrer impacto ou fricção entre o invólucro e peças de ferro/aço.

O produto adicionalmente marcado com a letra suplementar "W" indica que o equipamento foi ensaiado em uma solução saturada a 5% de NaCl p/p, à 35 °C, pelo tempo de 200 h e foi aprovado para uso em atmosferas salinas, condicionado à utilização de acessórios de instalação no mesmo material do equipamento e de bujões de aço inoxidável ASTM-A240, para fechamento das entradas roscadas não utilizadas.

Os planos de pintura P1 são permitidos apenas para equipamento fornecido com plaqueta de identificação com marcação para grupo de gás IIB.

O grau de proteção IP68 só é garantido se nas entradas roscadas de $\frac{1}{2}$ " NPT for utilizado vedante não endurecível à base de silicone.

O segundo numeral oito indica que o equipamento foi ensaiado para uma condição de submersão de dez metros por vinte e quatro horas. O acessório deve ser instalado em equipamentos com grau de proteção equivalente.

É responsabilidade do fabricante assegurar que todos os transformadores da placa analógica tenham sido submetidos com sucesso aos ensaios de rotina de 1500 V durante um minuto.

Este certificado é válido apenas para os produtos dos modelos avaliados. Qualquer modificação nos projetos, bem como a utilização de componentes ou materiais diferentes daqueles definidos pela documentação descritiva dos produtos, sem a prévia autorização, invalidará este certificado.

As atividades de instalação, inspeção, manutenção, reparo, revisão e recuperação dos equipamentos são de responsabilidade dos usuários e devem ser executadas de acordo com os requisitos das normas técnicas vigentes e com as recomendações do fabricante.

Normas Aplicáveis:

ABNT NBR IEC 60079-0:2020 Atmosferas explosivas - Parte 0: Equipamentos - Requisitos gerais

ABNT NBR IEC 60079-1:2016 Atmosferas explosivas - Parte 1: Proteção de equipamento por invólucro à prova de explosão "d"

ABNT NBR IEC 60079-11:2013 Atmosferas explosivas - Parte 11: Proteção de equipamento por segurança intrínseca "i"

ABNT NBR IEC 60079-26:2022 Atmosferas explosivas - Parte 26: Equipamentos com elementos de separação ou níveis de proteção combinados

ABNT NBR IEC 60079-31:2022 Atmosferas explosivas - Parte 31: Proteção de equipamentos contra ignição de

poeira por invólucros "t" ABNT NBR IEC 60529:2017 Graus de proteção providos por invólucros (Código IP)

Desenhos 102A1369, 102A1249, 102A2022, 102A2021, 102A2083

Plaquetas de Identificação

FM Approvals

sm	ar	FSR -	Formu	Ilário pa	ara So	licitaçã	o de R	evisão
		Conversor 4-20 mA para Fieldbus						
			D	ADOS GERA	IS			
Modelo:	IF302 ()	IF303 (()				
Nº de Série:								
TAG:								
Utilizando qua canais?	ntos ₁₍₎		2()		3()			
Configuração:	Chave N	Magnética (PC ())	Software: _		Versão:	
			DADO	S DA INSTAL	AÇÂO			
Tipo/Modelo/Faconectado ao	abricante do canal 1:	equipamento _						
Tipo/Modelo/F conectado ao	abricante do canal 2:	equipamento —						
Tipo/Modelo/Faconectado ao	abricante do canal 3:	equipamento -						
			DADC	DS DO PROC	ESSO			
Classificação Área/Risco	da ()Sim, po	or favor especifiq	ue:					
	() Não							
	Mais detalh	nes:						
Tipos de Interferência presente na área:	Sem interfe	erência ()	Temperatura () Vibração	() (Outras:		
Temperatura Ambiente:	De	⁰C até	ºC.					
			DESCRIÇ	ÃO DA OCO	RRÊNCIA			
				~				
A ¹ ()			SUGE	STAO DE SE	RVIÇO		A. 11 ~	
Ajuste (Limpeza ()		Manutençao I	Preventiva ()		Atualizaçao /	Upgrade ()
			DAD	OS DO EMITE	ENTE			
Empresa:								
Contato:								
Identificação:								
Setor:								
Telefone:						Ram	al:	
E-mail:						Data	:/	_/
Verifique os o	dados para em	iissão da Nota Fi	scal de Retorno	o no Termo de G	Garantia dispor	nível em: https:/	//www.smar.con	n.br/pt/suporte.

Retorno de Materiais

Caso seja necessário retornar o material para a SMAR, deve-se verificar no Termo de Garantia que está disponível em https://www.smar.com.br/pt/suporte as instruções de envio.

Para maior facilidade na análise e solução do problema, o material enviado deve incluir, em anexo, o Formulário de Solicitação de Revisão (FSR), devidamente preenchido, descrevendo detalhes sobre a falha observada no campo e sob quais circunstâncias. Outros dados, como local de instalação, tipo de medida efetuada e condições do processo, são importantes para uma avaliação mais rápida. O FSR encontra-se disponível no Apêndice B.

Retornos ou revisões em equipamentos fora da garantia devem ser acompanhados de uma ordem de pedido de compra ou solicitação de orçamento.