

DEC/24 - VERSION 3

Rua Dr. Antônio Furlan Junior, 1028 - Sertãozinho, SP - CEP: 14170-480 insales@smar.com.br | +55 (16) 3946-3599 | www.smar.com

© Copyright 2024, Nova Smar S/A. All rights reserved. March 2024. Specifications and information are subject to change. Updated addresses are available on our website.

INTRODUCTION

FP303 belongs to the first generation of PROFIBUS PA equipment, as a PROFIBUS PA converter that controls valves and other actuators. The FP303 has a 3 to 15 psi output or 3 to 30 psi proportional to the output received from the PROFIBUS PA network.

The FP303 is factory calibrated, compliant with the Order Code (3 to 15 psi or 3 to 30 psi), but it allows field calibration for the 3 to 15 psi or 3 to 30 psi.

The **FP303** digital technology enables friendly interface between the field and the control room and other interesting features that reduce considerably installation, operation, and maintenance costs.

The **FP303** is part of the Smar 302 PROFIBUS PA equipment and complies with the PROFIBUS DP-V1 version.

PROFIBUS is not only a substitute for the 4 -20 mA protocols or intelligent transmitters and have many other characteristics.

The **FP303** digital technology makes possible to choose multiple types of transference functions, an easy field and control room interface, and have other interesting properties that considerably cut down installation, operation, and maintenance costs.

Some highlights of the bidirectional digital communication of the intelligent devices protocols are: high precision, multi-variable access, diagnostic, remote configuration and multidrop of several equipments on a single pair of wires.

The system controls the sampling of variables, execution of algorithms and the communication, as well as optimizes the use of the network without time loss, hence obtaining a high performance for control loops.

Large control loops can be built with the PROFIBUS technology due to its capacity for interconnecting several equipments. The functional block concept was introduced to make the equipment easily understandable to the user.

The **FP303** and the entire 303 family have some built-in function blocks such as analogical output, transducer, and display blocks.

The development of the 303 series equipments took into consideration the need for implementing PROFIBUS both in small and big systems. They can be configured locally with a magnetic tool, thus eliminating the need for a configurator in many basic applications. This allow great flexibility when control strategies are implemented.

Get the best results from the FP303 by following the instructions on this manual.

NOTE

In case of using Simatic PDM as the configuration and parameterization tool, Smar recommends that the user does not apply the option "Download to Device". This function can improperly configure the field device. Smar recommends that user make the use of the option "Download to PG / PC" and then selecting the Device Menu, use the menus of the transducer, function and display blocks acting specifically, according to each menu and method for reading and writing.

NOTE

This manual is compatible with versions 3.XX, where 3 indicates the software version and the XX the software release. The 3.XX indication means that the manual is compatible with any version 3 software release.

Waiver of responsibility

The contents of this manual abides by the hardware and software used on the current equipment version. Eventually there may occur divergencies between this manual and the equipment. The information from this document are periodically reviewed and the necessary or identified corrections will be included in the following editions. Suggestions for their improvement are welcome.

Warning

For more objectivity and clarity, this manual does not contain all the detailed information on the product and, in addition, it does not cover every possible mounting, operation or maintenance cases.

Before installing and utilizing the equipment, check if the model of the acquired equipment complies with the technical requirements for the application. This checking is the user's responsibility.

If the user needs more information, or on the event of specific problems not specified or treated in this manual, the information should be sought from Smar. Furthermore, the user recognizes that the contents of this manual by no means modify past or present agreements, confirmation or judicial relationship, in whole or in part.

All of Smar's obligation result from the purchasing agreement signed between the parties, which includes the complete and sole valid warranty term. Contractual clauses related to the warranty are not limited nor extended by virtue of the technical information contained in this manual.

Only qualified personnel are allowed to participate in the activities of mounting, electrical connection, startup and maintenance of the equipment. Qualified personnel are understood to be the persons familiar with the mounting, electrical connection, startup and operation of the equipment or other similar apparatus that are technically fit for their work. Smar provides specific training to instruct and qualify such professionals. However, each country must comply with the local safety procedures, legal provisions and regulations for the mounting and operation of electrical installations, as well as with the laws and regulations on classified areas, such as intrinsic safety, explosion proof, increased safety and instrumented safety systems, among others.

The user is responsible for the incorrect or inadequate handling of equipments run with pneumatic or hydraulic pressure or, still, subject to corrosive, aggressive or combustible products, since their utilization may cause severe bodily harm and/or material damages.

The field equipment referred to in this manual, when acquired for classified or hazardous areas, has its certification void when having its parts replaced or interchanged without functional and approval tests by Smar or any of Smar authorized dealers, which are the competent companies for certifying that the equipment in its entirety meets the applicable standards and regulations. The same is true when converting the equipment of a communication protocol to another. In this case, it is necessary sending the equipment to Smar or any of its authorized dealer. Moreover, the certificates are different and the user is responsible for their correct use.

Always respect the instructions provided in the Manual. Smar is not responsible for any losses and/or damages resulting from the inadequate use of its equipments. It is the user's responsibility to know and apply the safety practices in his country.

TABLE OF CONTENTS

SECTION 1 - INSTALLATION	
GENERAL	
MOUNTING	
PNEUMATIC CONNECTIONS	
ELECTRIC CONNECTION	1.3
NETWORK CONFIGURATION AND TOPOLOGY	
WIRING	
INTRINSIC SAFETY BARRIER	
JUMPER CONFIGURATION	
POWER SUPPLY	
INSTALLATION IN HAZARDOUS AREAS	
EXPLOSION/FLAME PROOF	
INTRINSICALLY SAFE	1.7
SECTION 2 - OPERATION	
OUTPUT MODULE FUNCTIONAL DESCRIPTION	
FUNCTIONAL ELECTRONIC DESCRIPTION	
SECTION 3 - CONFIGURATION	
HOW TO CONFIGURE A TRANSDUCER BLOCK PROFIBUS PA TRANSDUCER BLOCK FUNCTIONAL DIAGRAM FOR THE PRESS	
PROFIBUS PA TRANSDUCER BLOCK FUNCTIONAL DIAGRAM FOR THE PRESS	
TRANSDUCER BLOCK PARAMETER DESCRIPTIONS	
TABLE OF TRANSDUCER BLOCK PARAMETER ATTRIBUTES	
TRANSDUCER BLOCK VISUALIZATION TABLE	
HOW TO CONFIGURE THE FP303 CYCLICALLY	
CALIBRATION	
PRESSURE TRIM	
TEMPERATURE CALIBRATION	
LOCAL ADJUSTMENT	
TRANSDUCER DISPLAY CONFIGURATION	
DISPLAY TRANSDUCER BLOCK	
PARAMETERS AND VALUES DEFINITION	
LOCAL ADJUSTMENT CONFIGURATION	
JUMPER J1 CONNECTION	
JUMPER W1 CONNECTION	
CYCLICAL DIAGNOSIS	
SECTION 4 - MAINTENANCE PROCEDURE	11
GENERAL	
DISASSEMBLY PROCEDURE	
TRANSDUCER	
ELECTRONIC CIRCUIT	
RESTRICTION CLEANING PROCEDURES	4.3 4 3
ASSEMBLY PROCEDURE	
TRANSDUCER	
EXHAUSTING OUTPUTS	
FILTERING ELEMENTS REPLACEMENT	
ELECTRONIC CIRCUIT	
ELECTRIC CONNECTIONS	
INTERCHANGEABILITY	
PACKAGING CONTENTS	
EXPLODED VIEW	
ACCESSORIES AND RELATED PRODUCTS	4 7
SPARE PARTS LIST	

ISOLATION TEST ON EQUIPMENT HOUSINGS	
SECTION 5 - TECHNICAL CHARACTERISTICS FUNCTIONAL SPECIFICATIONS PERFORMANCE SPECIFICATIONS PHYSICAL SPECIFICATIONS	5.1
ORDERING CODE	
APPENDIX A - CERTIFICATIONS INFORMATION	A.1
EUROPEAN DIRECTIVE INFORMATION HAZARDOUS LOCATIONS GENERAL INFORMATION HAZARDOUS LOCATIONS APPROVALS	A.1 A.3
IDENTIFICATION PLATES APPENDIX B – SRF – SERVICE REQUEST FORM RETURNING MATERIALS	B.1
RETURNING MATERIALS	В.2

Installation Flowchart

INSTALLATION

General

NOTE

The installation carried out in hazardous areas should follow the recommendations of the IEC60079-14 standard.

The precision of global measuring and control depends on many variables. Although the converter has high-level performance, an adequate installation is necessary for best profiting from the device benefits.

From all the factors possibly affecting the precision of converters, environmental conditions are the most difficult to cope with. However, there are ways to reduce the effects of temperature, humidity and vibration.

The FP303 circuit contains a sensor that compensates temperature variations. On the field, the effect of temperature variation is minimized due to this characteristic.

The effects from temperature variation can be reduced by installing the converter in areas protected from ambient changes.

In warm conditions, the converter must be installed in a way that avoids the maximum possible the direct exposition to solar rays. Also should be avoided the installation near high temperature lines or vases.

Thermal insulation should be used to protect the converter from external heat sources, if necessary.

Humidity is enemy to electronic circuits. The electronic housing cover o-rings must be set correctly mainly on areas with high relative humidity rates. Avoid removing the housing covers on the field, as each time they are open, more humidity penetrates in the circuits.

The electronic circuit is wetness-proof coated, but constant exposition to open air may impair this protection. By the same token, keep covers shut, since every time they are removed corrosion may deteriorate the housing threads, as this area is not painted. Use adequate sealant on the electric connections according to sealing method and the hazardous area classification to avoid the penetration of moisture.

IMPORTANT

Avoid using sealant tape on air inlets and outlets, as this type of material may release residues and block them and spoil the device performance.

The converter is practically insensitive to vibrations, although it is recommended not to install it near to pumps, turbines or equipments that produce excessive vibration.

Mounting

The converter is designed to be light and robust together. This makes its mounting easier and can be done in a 2" pipe, wall or panel. By using an adequate mounting bracket, it can be mounted in different positions.

Make sure the FP303 is mounted in a way that dust and particles do not obstruct the vents.

The FP303 has filters to protect the in-coming supply pressure and the vent, which must be kept clean. In case of impurity building, replace the filter (consult the recommended spare part),

For more visibility, the digital indicator may rotate at 90" angles, as well as the electronic housing, for better display reading and visibility.

Pneumatic Connections

The instrumentation air must be of better quality than industrial compressed air. Humidity, suspended particles and oil can temporarily harm the device performance or definitely, if the internal parts can be damaged.

In compliance with the ANSI/ISA S7.0.01 - 1996 - Quality Standard for Instrument Air standard, the instrumentation air must bear the following characteristics:

Dew Point	10° C below the minimum registered temperature.
Size of particles	40 μm (maximum).
Oil content	1 ppm w/w (maximum).
Contaminants	Must be free from corrosive or inflammable gases.

The standard recommends that the compressor inlet is in a place free from process spills and uses the adequate filter. Also, that non-lubricated compressors are used to prevent contamination from lubricant oil. When lubricated compressors are used, there must be means to clean the contaminated air.

It is recommended the periodical filter cleaning, and more frequent ones in case of bad instrumentation air quality.

For an **output signal from 3 psi (0,2 bar) to 15 psi (1 bar)**, it is required a minimum air supply of 18 psi (1.24 bar) and a maximum 100 psi (7 bar) supply.

For an **output signal from 3 psi (0,2 bar) to 30 psi (2 bar)**, it is required a minimum air supply of 40 psi (1.4 bar) and a maximum 100 psi (7 bar) supply.

NOTE
To get a maximum output pressure value, the converter requires the minimum necessary pressure described
above

An excessive pressure supply, above 100 psi, may be harmful.

The air pressure supply for the FP303 must be a minimum of 18 psi and a maximum of 100 psi. If this condition cannot be met, an air pressure regulator is recommended.

The air supply inlet is marked with "IN" and the outlet with "OUT" (See figure 1.3 - Converter Dimensional Drawing and Mounting Position)

The air supply inlet and outlet connections are ¼ " NPT threaded. Before connecting the piping, purge the lines completely. There must be no leaks, mainly on the outlet. Check all piping parts and connection for leaks. Use good sealing practices before operating the equipment. Thread sealants are recommended instead of PTFE (Teflon) sealant tape.

The vent is used to exhaust the air to relieve the output pressure. This vent must never be obstructed for better air flow.

In case of loss of pressure supply, the output will drop near 0 Kgf/cm³ (0 psi). If the pressure is kept, but communication is lost, the output may be pre-configured for a free value or a safe value.

Electric Connection

To access the terminal block, remove the Electric Connection cover. This cover can be locked with its locking screw. To release it, rotate the locking screw clockwise.

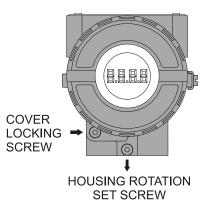


Figure 1.1 - Cover Locking Screw

The access of signal cables and their connection to the terminals are done through one of the two orifices in the electronic housing, by linking them to a electric conduit o cable clamp. The conduit threads must be sealed according to the required method. The unused orifice must be sealed with a plug or sealant.

The electrical orifices must be connected in a way that prevents humidity inside the device. After completing the connections, shut the device cover to avoid humidity.

The terminal block has screws to receive fork or eye terminals.

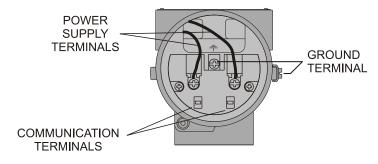


Figure 1.2 – Electric Connections

NOTE The unused cable entries should be plugged and sealed accordingly to avoid humidity entering, which can cause the loss of the product's warranty.

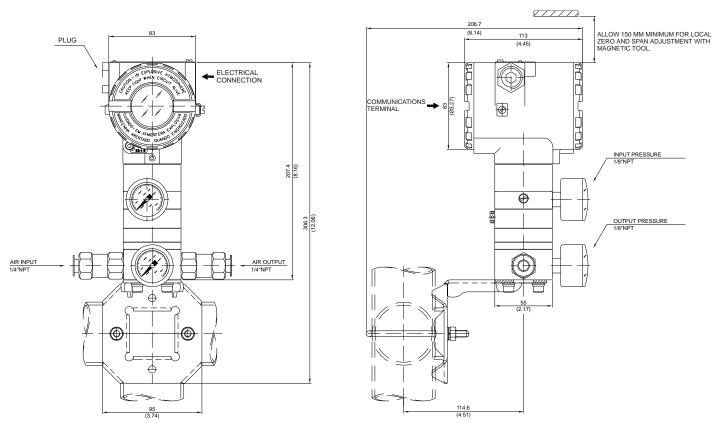


Figure 1.3 – Converter Dimensional Drawing and Mounting Position

For more convenience, there are three ground terminals: an internal one, close to the terminal block and two external ones, located near the conduit inlet.

The FP303 uses the 31,25 Kbit/s voltage mode for physical signalization, and the other devices on the same bus must use the same signals. All devices are connected in parallel on the same line. The several Fieldbus devices can be connected on the same bus.

The FP303 is powered via the bus. The number of devices to be connected on the same bus is 15 for non-intrinsically safe installations.

In classified areas, the number of devices is limited by the intrinsic safety restrictions.

Avoid passing the signal wiring through conduits with power cables or electric commuters.

The FP303 is protected against reverse polarity and can support \pm 35 Vdc without being damaged. The reverse polarity does not damage the equipment; however it will not work.

Network Configuration and Topology

Wiring

Other types of cable may be used, other than for conformance testing. Cables with improved specifications may enable longer trunk length or superior interface immunity. Conversely, cables with inferior specifications may be used subject to length limitations for trunk and spurs plus possible nonconformance to the RFI/EMI susceptibility requirements. For intrinsically safe applications, the inductance/ resistance ratio (L/R) should be less than the limit specified by the local regulatory agency for the implementation.

Bus topology (See Figure 1.4) and tree topology (See Figure 1.5) are supported. Both types have a trunk cable with two terminations. The devices are connected to the trunk via spurs. The spurs may be integrated in the device giving zero spur length. A spur may connect more than one device, depending on the length. Active couplers may be used to extend spur length.

Active repeaters may be used to extend the trunk length.

The total cable length, including spurs, between any two devices in the Profibus should not exceed 1900 m.

The connection of couplers should be kept less than 15 per 250 m. In following figures, the DP/PA link depends on the application needs.

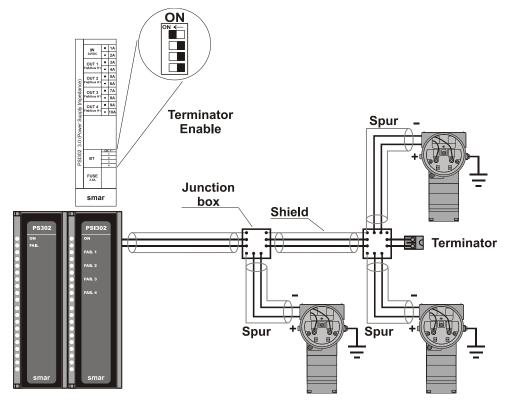


Figure 1.4 - Bus Topology

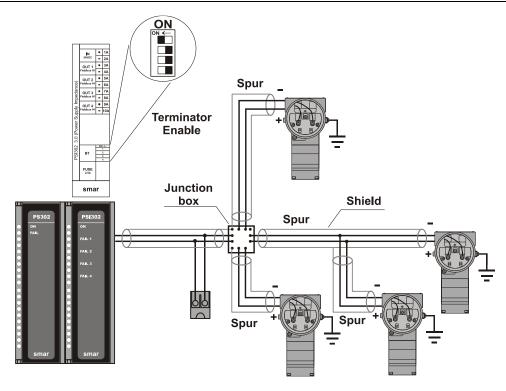


Figure 1.5 – Tree Topology

Intrinsic Safety Barrier

When the Profibus is in an area requiring intrinsic safety, a barrier must be inserted on the trunk between the power supply and the DP/PA coupler, when it is Non-Ex type.

Use of DF47 is recommended. See more in http://www.smar.com.

Jumper Configuration

To work properly, the jumpers J1 and W1 located in the **FP303** main board must be correctly configured.

J1	This jumper enables the simulation mode parameter in the AO block.
W1	This jumper enables the local adjustment programming tree.

Table 1.1 - Description of the Jumpers

Power Supply

The **FP303** receives power from the bus via the signal wiring. The power supply may come from a separate unit or from another device such as a controller or DCS (Digital Control System).

The voltage should be between 9 to 32 Vdc for non-intrinsic safe applications.

A special requirement applies to the power supply used in an intrinsically safe bus and depends on the type of barrier used.

Use of **PS302** is recommended as power supply. See more in <u>http://www.smar.com</u>.

Installation in Hazardous Areas

See Appendix A for further information.

OPERATION

Output Module Functional Description

The output module main parts are: pilot, servo, pressure sensor and output control circuit.

The pneumatic part is based on a well known technology: pneumatic relay and the nozzle-baffle set, according to the schematic drawing on Figure 2.1.

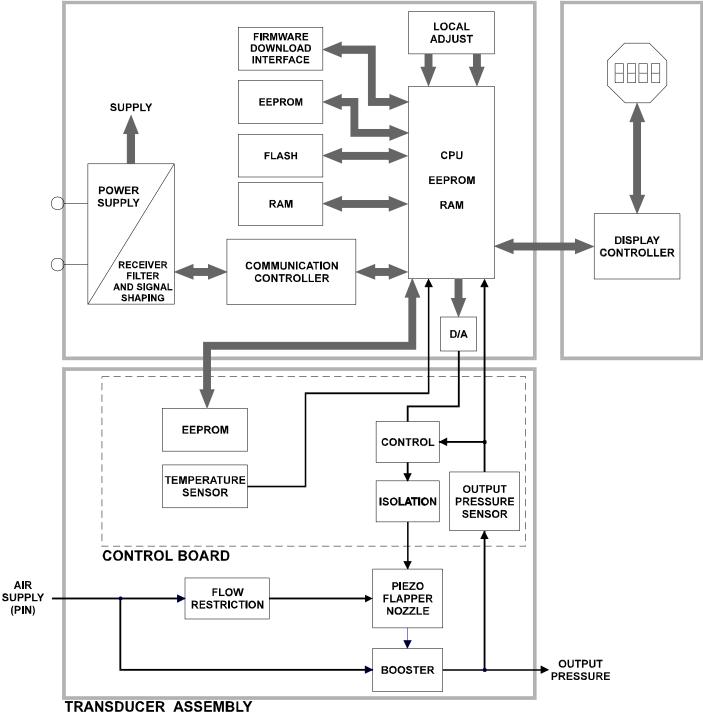
Figure 2.1 – Pneumatic Transducer

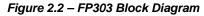
A piezoelectric disc is used as a baffle at the pilot stage. The baffle is deflected when it receives a voltage through the control circuit. Approaching or moving away from the piezoelectric disc causes a variation on the small air flow passing through the nozzle and changes the pilot chamber pressure, which is called pilot pressure.

The pilot pressure, for being too low, must be amplified. This is performed in the servo section, which works as pneumatic relay. The servo section has a diaphragm in the pilot chamber and a smaller output diaphragm in the output chamber. The pressure pilot, when applied on the pilot diaphragm results in a force equal to the pressure on the output diaphragm, when in balance.

When an increase is required in the output pressure, the baffle will move away from the nozzle according to value set, and the correction is carried out as described above. Spring 1 forces the valve downwards and increases the output pressure until it reaches a new balance.

If a decrease in pressure is required, the baffle will approach the nozzle and the pilot pressure will increase. The valve will close through the spring 2 and the diaphragms will be pushed upwards by the stronger output flow and pilot pressure.


The air in the system relieves the output pressure through the vent, decreasing the output pressure until reaching balance again.


Functional Electronic Description

The FP303 CPU receives the required output level through the Fieldbus network. The CPU supplies an electronic setpoint signal to the control circuit. The control circuit also receives a feedback from a pressure sensor on the FP303 outlet.

Each block function will be described below.

Power Supply

The FP303 converter circuit is bus powered via the transmission line (two-wire system).

Communication Controller

Controls the line activity, modulates and demodulates communication signals and inserts or erases initial or final delimitators according to the Fieldbus protocol.

Central Processing Unit (CPU), RAM and PROM

The CPU is the converter intelligent part and is responsible for the management and executing operation of the block, self-diagnosis and communication. The program is stored in the PROM. For the temporary storage of data, the CPU has an internal RAM. The CPU has a non-volatile internal memory (EEPROM) that store data that must be retained in case of power failure. Examples are data calibration, configuration and identification.

Display Controller

Receives data from the CPU and send them to liquid crystal display.

Local Adjustment

Two switches are magnetically activated via the magnetic configuration tool without any external electric or mechanic contact. There is no need for opening the housing cover to access the Local Adjustment.

D/A Block

Receives the CPU signal and convert it into an analog voltage used by the control block.

Control Block

Controls the output pressure, while supplying voltage to the piezoelectric disc, according to the data received from the CPU and the pressure sensor feedback.

Isolation

Its function is to isolate the Fieldbus signal from the piezoelectric signal.

Output Pressure Sensor

Measures the output pressure and sends a feedback to the Control Block and the CPU.

Temperature Sensor

Measures the temperature on the transducer board.

EEPROM

Non-volatile memory that stores data when the FP303 is reinitialized.

Nozzle-Baffle

This unit converts the piezoelectric movement inside a pneumatic signal to a pressure control in the pilot chamber.

Restriction

The restriction and the nozzle form a pressure divisor circuit. The restriction reduces the supply pressure to activate the nozzle-baffle system, as described above on Output Module Functional Description.

Booster

The booster amplifies the pressure changes that occur before the pressure restriction into bigger values with the bigger air volume as described on Output Module Functional Description.

CONFIGURATION

One of the PROFIBUS features is to configure the equipment regardless of the configurator used. The **FP303** can be configured on the terminal or third-parties console. The **FP303** has three output transducer blocks, one physical block, one display transducer block and one analog output function block. The function blocks are not covered in the manual. For explanations and details, see the "Functional Block Manual".

The transducer block isolates the specific I/O hardware function block, like sensors and actuators, while controlling the I/O access through the manufacturer specific action. This prompts the transducer block to execute the algorithm as many times as required for getting valid sensor data without overloading the function blocks that use them. It also isolates the function blocks from the specific characteristics of some existing hardware.

When accessing the hardware, the transducer block gets I/O data or sends control data to it. The connection between the transducer block and the input/output function blocks is called channel. Normally, the transducer blocks execute functions as: linearization, characterization, temperature compensation, control and data exchange to/from the hardware.

Offline Configuration

- 1. First run "Download to PG/PC" option to assure valid values.
- 2. Run after the Menu Device option to configure the required parameters using the related menus.

NOIE
It is not advisable to use the "Download to Device" option. This function can misconfigure the equipment.

How to Configure a Transducer Block

The transducer block has an algorithm, a set of stored parameters and a channel connecting them to the function block. The algorithm describes the transducer work as a function to transfer data between the I/O circuit and the other functional block. The stored parameters define the user interface to the transducer block. These parameters cannot be connected to the other blocks. They can be divided in specific manufacturer standards.

The standard parameters will be present for each class of equipment, such as: pressure, temperature, actuator, etc. regardless of the manufacturer. On the other hand, the specific manufacturers parameters are defined by them, such as, calibration setting, materials information, linearization curve, etc.When a routine standard calibration is performed, the user is guided step by step by a method. The method is normally designed as a reference to help carry out the most common tasks. The configuration tool identifies each method associated to the parameters and enables the interface, the linearization curve, etc.

Profibus PA Transducer Block Functional Diagram for the Pressure Transducer Block

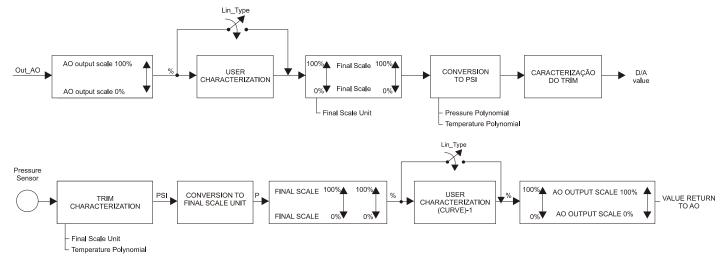


Figure 3.1 - Profibus PA Transducer Block Functional Diagram for the Pressure Transducer Block

Transducer Block Parameter Descriptions

ÍNDEX	PARAMETER MNEMONIC	DESCRIPTION
1	ST_REV	Indicates the static data level.
2	TAG_DESC	Describe the Transducer block
3	STRATEGY	This parameter is not processed by the transducer block.
4	ALERT KEY	Plant ID number.
5	TARGET_MODE	Indicates the target block operation mode.
6	MODE_BLK	Indicates the transducer block operation mode.
-		Shows the status of up to 16 alarm blocks. For each alarm, the current status,
7	ALARM_SUM	unknown status, non-reported status and disabled status are kept.
8	FINAL_VALUE	The command variable for the final control element in OUT_SCALE units. The status BAD will move the actuator to the fail-safe position as defined by the ACTUATOR_ACTION.
9	FINAL_VALUE_SCALING	The values for the upper and lower range limits, the engineering unit code and the number of digits after the decimal point f the final value.
10	CAL_POINT_HI	The calibration upper point.
11	CAL_POINT_LO	The calibration lower point.
12	CAL_MIN_SPAN	The minimum permitted span calibration value. This information is needed to ensure that both upper and lower points do not stay too close.
13	CAL_UNIT	The engineering unit codes for calibration values. See page 3-14 for the valid units.
14	CONV_SN	Converter serial number.
15	ACTUATOR_ACTION	Specifies the actuator work in case of failure. The fail-safe position for the lack of energy on the valve actuator: 0 = not initialized; 1 = 100% opening; 2 = 0% opening;
		3 = none / stays on same position.
16	ACTUATOR_MAN	Name of actuator manufacturer.
17	ACTUATOR_TYPE	Type of actuator: 0 = electro-pneumatic; 1 = electric; 2 = electric-hydraulic; 3 = others.
18	ACTUATOR_SER_NUM	Actuator serial number.
19	VALVE_MAN	Name of valve manufacturer.
20	VALVE_SER_NUM	Valve serial number.
21	VALVE_TYPE	Valve type: 0 = linear, sliding movement; 1 = 1-turn, rotary movement; 2 = multi rotary movement.
22	VALVE_MAINT_DATE	Date of latest valve maintenance.
23	DEVICE_CALIB_DATE	Date of latest equipment calibration.
24	DEVICE_CONFIG_DATE	Date of latest equipment configuration.
25	FEEDBACK_VALUE	Current position of the final control element in OUT_SCALE units.
26	RATE_DEC	Ramp descending inclination where the setpoint is executed on Auto mode, in units per second. If the ramp inclination is set on zero, the setpoint will be used immediately.
27	RATE_INC	Ramp ascent inclination where the setpoint is executed on Auto mode, in FV units per second. If the ramp inclination is set on zero, the setpoint will be used immediately.
28	LIN_TYPE	Type of linearization:0Without linearization (mandatory);1Linearization table (optional);240Manufacturer-specific;249Manufacturer-specific;250Not used;251None;252Unknown;253Special.
29	TAB_ENTRY	The index parameter identifies which table element is on the parameter.
30	TAB_X_Y_VALUE	The X_Y_VALUE parameter has a table pair of values.
31	TAB_MIN_NUMBER	For internal equipment reasons, such as calculations, it may be necessary to use a minimum table values. This number is shown one the TAB_MIN_NUMBER parameter.
32	TAB_MAX_NUMBER	TAB_MAX_NUMBER is the maximum size (number of X_VALUE and Y_VALUE

34 TAB_OP_CODE provide the initial and end points. The TAP_OP_CODE protector status table transaction. C: Not initialized. 1: Not work option: characteristic, TAB_INDEX=1 first value, former curve deleted. 2: last value, and of transmission, table check, replace old curve for the new or update ACTUAL_NUMBER. 4: deletes the table point with current index (optional), registers the Charact-Input- Value in raising order, indicavate relevant) optional point, registers the Charact-Input- Value in raising order, indicavate relevant) optional point, registers the Charact-Input- Value in raising order, indicavate relevant) optional point, registers the Charact-Input- Value in raising order, indicavate relevant) optional point, registers the Charact-Input- Value in raising order, indicavate relevant) optional point, registers the Charact-Input- Value in raising order, indicavate anew index, increases the Index. The table option with the optional current index. The advector parts of it can be read without the table is valid). 2: Non-monotonous decrease (old table is valid). 2: Non-monotonous decrease (old table is valid). 2: Etage updaterized to table is valid). 2: Etage updaterized to table is valid). 2: Etage updaterized to table is valid). 2: Etage updaterized pacific 36 SECONDARY_VALUE Secondary value related to sensor (°C). 3: Etage updaterized pacific 36 SECONDARY_VALUE_UNIT Engleening units to be usdot of secondry value related to sensor (°C) (°C). 3: Etage updaterized pacific 39 BACKUP_RESTORE Temperature sensor calibration procedures. It has the following options. 1: "Factory Cal Reatory" (Reestablehes late valid adia) 4	ÍNDEX	PARAMETER MNEMONIC	DESCRIPTION
33 TAB_R.N.TUAL_MUMBER transmission. 34 Altering an equipment table affects the equipment measuring or algorithms, being necessary the indication of the initial and end points. The TAP_OF CDDE particulate controls the table transaction. 0 The Mark of CDDE particulate controls the table transaction. 0 34 TAB_OP_CODE The Mark of CDDE particulate controls the table transaction. 0 The Mark of CDDE particulate controls the table transaction. 0 34 TAB_OP_CODE The Mark of CDDE particulate controls the table transaction. 0 The Mark of CDDE particulate controls the table transaction. 0 34 TAB_OP_CODE Table table the table point with current index (optional point registers the Charact-Input- Value in relaxing order, indicates a new index, indexess the table point with the optional current index. The table of parts of It can be read without combining the beginning and the end (TAB_OB_CODE to parts of It can be decided on the satting TAB_ENTRY on 1. 0 35 TAB_STATUS The God (new table is valid). 3 Non-monotonous increase (of table is valid). 3 Non-monotonous increase (of table is valid). 3 36 SECONDARY_VALUE Secondary value related to sensor (°C). 7 Unscoperation point. 7 37 TAB_STATUS The part of the table is valid). 3 Non-monotonous increase (of table is valid). 3 Non-monotonous increase (of table is valid). 3 Non-monotonous increase (of table is valid			values) of the equipment table.
Altering an equipment table affects the equipment messange or algorithms, being meessary the indication of the initial and end points. The TAP_OP_CODE parameter controls the table transaction. 1. The TAP_OP_CODE parameter controls the table transaction. 2. Teasavel. 3. Isst value, end of transmission, Table (Table Value), former curve deleted. 2. Teasavel. 3. Isst value, end of transmission, Table (Table Value), former curve deleted. 3. Isst value, end of transmission, Table (Table Value), former curve deleted. 3. Isst value, end of transmission, Table (Table Value), former curve deleted. 4. deletes the table point with current index, deptonal point, registers the Charact-Input- Value in raising order, indicates a new index, decreases the enew. 5. Insents the Charact-Input-Value relevanty point index, decreases the Charact-Input- Value in raising order, indicates a new index, indicates and the charact input- Value in raising order, indicates a new index, indicates and the point of	33	TAB_ACTUAL_NUMBER	
TAB_STATUS C: Not initialized 35 TAB_STATUS Code (new table is valid), 2: Non-monotonous decrease (old table is valid), 4: Insufficient transmitted values (old table is valid), 5: Edge gradient too high (old table is valid), 6: Edge gradient too high (old table is valid), 7: Unexpected values (old table is valid), 7: Unexpected value (alber table), 7: Unexpected values (old table is valid), 7: Unexpected value (old table is valid), 7: Unexpected value value valid), 7: U	34	TAB_OP_CODE	 The TAP_OP_CODE parameter controls the table transaction. 0: Not initialized. 1: New operation characteristic, TAB_INDEX=1 first value, former curve deleted. 2: reserved. 3: last value, end of transmission, table check, replace old curve for the new or update ACTUAL_NUMBER. 4: deletes the table point with current index (optional), registers the Charact-Input-Value in raising order, indicates a new index, decreases the new. CHARACT_NUMBER. 5: inserts the (Charact-Input-Value relevant) optional point, registers the Charact-Input-Value in raising order, indicates a new index, increases the CHARACT_NUMBER. 6: replaces the table point with the optional current index. The table or parts of it can be read without combining the beginning and the end
36 SECONDARY_VALUE Secondary value related to sensor (°C). 37 SECONDARY_VALUE_UNIT Engineering units to be used with the secondary value related to sensor (°C) (1001). 38 CAL_TEMPERATURE Temperature sensor calibration point. 39 BACKUP_RESTORE Saves and restores data according to the factory calibration) 2, "Last Cal Restore", (Reestablishes last calibration) 2, "Last Cal Restore", (Reestablishes data) 39 BACKUP_RESTORE 4, "Shut-Down Data Restore", (Reestablishes data) 30 COEFF_PRESS_POL Pressure coefficient 0 to 10. 40 COEFF_PRESS_VERSION Pressure coefficient 0 to 10. 41 POLYNOMIAL_PRESS_VERSION Pressure coefficient 0 to 10. 43 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor coefficient 0 to 10. 44 COEFF_SENS_TEMP_VERSION Temperature sensor coefficient 0 to 10. 45 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor coefficient 0 to 7. 46 SENSOR_PRESS_POL Temperature sensor coefficient 0 to 7. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_HI_SENSOR_PRES Pressure sensor polinomial	35		 0: Not initialized 1: Good (new table is valid). 2: Non-monotonous increase (old table is valid). 3: Non-monotonous decrease (old table is valid). 4: Insufficient transmitted values ((old table is valid). 5: Many transmitted values (old table is valid). 6: Edge gradient too high (old table is valid). 7: Unexpected values (old table is valid) 8 - 127 reserved
37 SECONDARY_VALUE_UNIT Engineering units to be used with the secondary value related to sensor (%C) (1001). 38 CAL_TEMPERATURE Temperature sensor calibration point. 39 BACKUP_RESTORE 1, "Factory Cal Restore", (Reestabilishes factory calibration) 39 BACKUP_RESTORE 2, "Last Cal Restore", (Reestabilishes data) 40 7. "Sensor Data Restore", (Reestabilishes data) 5, "Sensor Data Restore", (Reestabilishes data) 10, "Sensor Data Restore", (Reestabilishes data) 11, "Factory Cal Restore", (Reestabilishes data) 5, "Sensor Data Restore", (Reestabilishes data) 12, "Last Cal Restore", (Reestabilishes data) 14, "Shut-Down Data Restore", (Reestabilishes data) 15, "Sensor Data Backup", (Saves data as factory data) 16, "Sensor Data Backup", (Saves data before turning off) 16, "Sensor Data Backup", (Saves data before turning off) 16, "Sensor Data Backup", (Saves data before turning off) 16, "Sensor Data Backup", (Saves data as factory data) 10, "None", (No data) 10 14 POLYNOMIAL_PRESS_VERSION Pressure coefficient 0 to 10. 14 COEFF_SENS_TEMP_POL Temperature sensor coefficient 0 to 7. 15 POLYNOMIAL_SENS_PRESS_VERSION Temperature se	36	SECONDARY VALUE	
38 CAL_TEMPERATURE Temperature sensor calibration point. 39 BACKUP_RESTORE 1, "Factory Cal Restore", (Reestablishes factory calibration) 39 BACKUP_RESTORE 2, "Last Cal Restore", (Reestablishes factory calibration) 30 BACKUP_RESTORE 3, "Default Data Restore", (Reestablishes data) 4, "Shut-Down Data Restore", (Reestablishes data) 4, "Shut-Down Data Restore", (Reestablishes data) 11, "Factory Cal Backup", (Saves data as factory data) 11, "Factory Cal Backup", (Saves data as factory data) 12, "Last Cal Backup", (Saves data as last valid calibration) 14, "Shut-Down Data Backup", (Saves data before turning off) 15, "Sensor Data Backup", (Saves data before turning off) 15, "Sensor Data Backup", (Saves data before turning off) 14 POLYNOMIAL_PRESS_VERSION Pressure coefficient 0 to 10. 41 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor coefficient 0 to 10. 42 COEFF_SENS_TEMP_VERSION Temperature sensor polinomial version. 44 COEFF_SENS_PRESS_POL Temperature sensor polinomial version. 44 COEFF_SENS_PRESS_VERSION Temperature sensor polinomial version. 46 SENSOR_PRESS PRESS_VERSION Temperature sensor polinomial version. 47 CAL_POINT_H_ISENSOR_PR			
Saves and restores data according to the factory and calibration procedures. It has the following options: Saves and restores data according to the factory and calibration) 39 BACKUP_RESTORE 1, "Factory Cal Restore", (Reestablishes factory calibration) 39 BACKUP_RESTORE 2, "Last Cal Restore", (Reestablishes data) 4, "Shut-Down Data Restore", (Reestablishes end that as the factory data) 1, "Factory Cal Backup", (Saves data as factory data) 11, "Factory Cal Backup", (Saves data as factory data) 11, "Factory Cal Backup", (Saves data as last valid calibration) 14, "Shut-Down Data Backup", (Saves data as last valid calibration) 14, "Shut-Own Data Backup", (Saves data as last valid calibration) 15, "Sensor Data Backup", (Saves data as factory data) 12, "Last Cal Backup", (Saves data before turning off) 15, "Sensor Data Backup", (Saves data before turning off) 15, "Sensor Data Backup", (Saves data before turning off) 16, "None", (No data) 10, "None", (No data) 10, "None", (No data) 40 COEFF_SENS_TEMP_POL Temperature sensor coefficient 0 to 10. 41 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor polinomial version. 42 COEFF_SENS_PRESS_POL Temperature sensor coefficient 0 to 7. 43 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor polinomial ve			
40 COEFF_PRESS_POL Pressure coefficient 0 to 10. 41 POLYNOMIAL_PRESS_VERSION Pressure polinomial version. 42 COEFF_SENS_TEMP_POL Temperature sensor coefficient 0 to 10. 43 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor polinomial version. 44 COEFF_SENS_PRESS_POL Temperature sensor coefficient 0 to 7. 45 POLYNOMIAL_SENS_PRESS_VERSION Temperature sensor polinomial version. 46 SENSOR_PRESSURE Pressure sensor value and status. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR XD_ERROR 53 MAIN_BOARD_SN Main board serial number.	39	BACKUP_RESTORE	 "Factory Cal Restore", (Reestablishes factory calibration) "Last Cal Restore", (Reestablishes last calibration) "Default Data Restore", (Reestablishes default data) "Shut-Down Data Restore", (Reestablishes data) "Sensor Data Restore", (Reestablishes sensor data) "Factory Cal Backup", (Reestablishes sensor data) "Last Cal Backup", (Saves data as factory data) "Shut-Down Data Backup", (Saves data before turning off) "Sensor Data Backup", (Saves sensor data)
42 COEFF_SENS_TEMP_POL Temperature sensor coefficient 0 to 10. 43 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor polinomial version. 44 COEFF_SENS_PRESS_POL Temperature sensor coefficient 0 to 7. 45 POLYNOMIAL_SENS_PRESS_VERSION Temperature sensor polinomial version. 46 SENSOR_PRESSURE Pressure sensor value and status. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR 22, "Applied process out of range" 53 MAIN_BOARD_SN Main board serial number.	40	COEFF_PRESS_POL	
43 POLYNOMIAL_SENS_TEMP_VERSION Temperature sensor polinomial version. 44 COEFF_SENS_PRESS_POL Temperature sensor coefficient 0 to 7. 45 POLYNOMIAL_SENS_PRESS_VERSION Temperature sensor polinomial version. 46 SENSOR_PRESSURE Pressure sensor value and status. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR 22, "Applied process out of range" 53 MAIN_BOARD_SN Main board serial number.	41	POLYNOMIAL_PRESS_VERSION	Pressure polinomial version.
44 COEFF_SENS_PRESS_POL Temperature sensor coefficient 0 to 7. 45 POLYNOMIAL_SENS_PRESS_VERSION Temperature sensor polinomial version. 46 SENSOR_PRESSURE Pressure sensor value and status. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor lower calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 53 MAIN_BOARD_SN Main board serial number.	42	COEFF_SENS_TEMP_POL	Temperature sensor coefficient 0 to 10.
45 POLYNOMIAL_SENS_PRESS_VERSION Temperature sensor polinomial version. 46 SENSOR_PRESSURE Pressure sensor value and status. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR 22, "Applied process out of range" 53 MAIN_BOARD_SN Main board serial number.	43	POLYNOMIAL_SENS_TEMP_VERSION	Temperature sensor polinomial version.
46 SENSOR_PRESSURE Pressure sensor value and status. 47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 53 MAIN_BOARD_SN Main board serial number.	44	COEFF_SENS_PRESS_POL	Temperature sensor coefficient 0 to 7.
47 CAL_POINT_HI_SENSOR_PRES Pressure sensor upper calibration point. 48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.	45		Temperature sensor polinomial version.
48 CAL_POINT_LO_SENSOR_PRES Pressure sensor lower calibration point. 49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.	46	SENSOR_PRESSURE	Pressure sensor value and status.
49 FEEDBACK_CAL Measured value when the calibration method is being carried out. 50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.	47		Pressure sensor upper calibration point.
50 CAL_CONTROL After entering the calibration method, CAL_CONTROL is used to return to previous normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.			·
S0 CAL_CONTROL normal operation. 51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.			
51 PIEZO_VOLTAGE Piezo value and status. 52 XD_ERROR Indicates the condition of the calibration process according to: 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.	50	CAL_CONTROL	
52 XD_ERROR 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 26, "Invalid configuration for request" 27, "Excess correction" 28, "Calibration failed" 28, "Calibration failed" 53 MAIN_BOARD_SN Main board serial number.	51	PIEZO_VOLTAGE	
	52	XD_ERROR	 16, "Default value set" 22, "Applied process out of range" 26, "Invalid configuration for request" 27, "Excess correction"
54 EEPROM FLAG This parameter indicates the EEPROM saving process.	53	MAIN_BOARD_SN	Main board serial number.
	54	EEPROM_FLAG	This parameter indicates the EEPROM saving process.

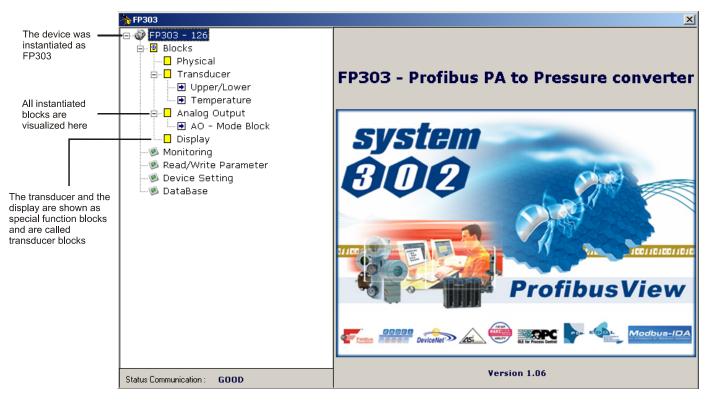
ÍNDEX	PARAMETER MNEMONIC	DESCRIPTION
		0, "False" 1, "True"
55	ORDERING_CODE	Indicates the information from the sensor and the factory production control.

Table 3.1 – Transducer Block Parameter Description

Table of Transducer Block Parameter Attributes

Standard parameter Image: Constraints Electro-preumatic Transducer Block Additional parameters I B FINAL, VALUE Record DS.33 D 5 r.w. C/a 0 MIR 10 CAL POINT HI Simple FINAL, VALUE Record DS.35 S 4 r C/a 0.001 11 CAL POINT HI Simple FINAL, VALUE Simple FINAL N 4 r.w. C/a 0.001 12 CAL MIN SPAN Simple Unsigned16 N 2 r C/a 0.001 13 CALUNIT Simple Unsigned32 N 4 r.w. C/a MIR 14 CONVS SN Simple Unsigned38 1 r.w. C/a MIR 16 ACTUATOR MAN Simple Unsigned8 N 1 r C/a MIR 16 ACTUATOR MAN Simple OtestString S 16 r.w. C/a	Related Index	Parameter Name	Object Type	Data Type	Storage	Size	Access	Parameter used/Type of transport	Standard	Mandatory/Opti onal Class
8 FINAL_VALUE Record DS.35 V F.W C/a - MM 9 FINAL_VALUE_SCAING Record DS.36 S 4 r C/a 1.5.0.psi O (i 10 CAL POINT_LO Simple Float N 4 r C/a 3.0.psi O (i 11 CAL POINT_LO Simple Insigned 16 N 4 r C/a 3.0.psi O (i 12 CAL MIN SPAN Simple Unsigned32 N 4 r.w C/a 0 O (i 13 CALATOR Simple Unsigned32 N 4 r.w C/a 0 O (i 14 ACTUATOR ACTION Simple OtestSimg Simple Insigned32 N 1 r.w C/a 0 O (i 17 ACTUATOR Simple OtestSimg S 16 r.w C/a 0 M (i 16 I.w C/a <t< td=""><td></td><td>parameter</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		parameter								
8 FINAL_VALUE Record DS.35 V F.W C/a - MM 9 FINAL_VALUE_SCAING Record DS.36 S 4 r C/a 1.5.0.psi O (i 10 CAL POINT_LO Simple Float N 4 r C/a 3.0.psi O (i 11 CAL POINT_LO Simple Insigned 16 N 4 r C/a 3.0.psi O (i 12 CAL MIN SPAN Simple Unsigned32 N 4 r.w C/a 0 O (i 13 CALATOR Simple Unsigned32 N 4 r.w C/a 0 O (i 14 ACTUATOR ACTION Simple OtestSimg Simple Insigned32 N 1 r.w C/a 0 O (i 17 ACTUATOR Simple OtestSimg S 16 r.w C/a 0 M (i 16 I.w C/a <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
9 FINAL_VALUE SCALING Record DS-36 S 4 r C/a O (f) 10 CAL_POINT_LO Simple Float N 4 r.w C/a 150,ppl 0 (f) 12 CAL_MIN_SPAN Simple Unsigned16 N 4 r.w C/a 70,ppl 0 (f) 12 CAL_MIN_SPAN Simple Unsigned16 N 2 r C/a 70,0 0 (f) 14 CONV_SN Simple Unsigned32 N 4 r.w C/a 0 (f) 16 ACTUATOR ANN Simple OnetaStimg S 16 r.w C/a MIM 19 VALVE_MANN Simple OcteStimg S 16 r.w C/a MIM 20 VALVE_MANN_DATE Simple OcteStimg S 16 r.w C/a MIM 21 VALVE_MANN_DATE Simple OcteStimg S 16 r.w	Electro-p		al paramete							
10 CAL POINT LO Simple Float N 4 r,w C/a 15.0 psi O (f) 11 CAL MIN SPAN Simple Float N 4 r C/a 3.0 psi O (f) 13 CAL UNIT Simple Unsigned16 N 4 r,w C/a 7.0 psi O (f) 14 CONV_SN Simple Unsigned16 N 4 r,w C/a O O (f) 15 ACTUATOR, ATON Simple Unsigned35 N 1 r,w C/a MIK 16 ACTUATOR, SER NUM Simple OtelSting S 16 r,w C/a O O (I 20 VALVE_SER NUM Simple OtelSting S 16 r,w C/a O O (I 21 VALVE_MAN DATE Simple OtelSting S 16 r,w C/a O O (I 22 VALVE_MAN DATE Simple <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>r,w</td> <td></td> <td></td> <td>M(B)</td>	-						r,w			M(B)
11 CAL POINT_LO Simple Float N 4 r C/a 3.0 psi 0 (f) 12 CAL UNIT Simple Unsigned16 N 2 r C/a 7.0 psi 0 (f) 14 COV/SN Simple Unsigned16 N 4 r/w C/a 0 0 (f) 16 ACTUATOR ACTION Simple Unsigned18 N 1 r/w C/a 0 0 (f) 16 ACTUATOR ANN Simple OctaStimg S 16 r/w C/a 0 0 (f) 18 ACTUATOR ANN Simple OctaStimg S 16 r/w C/a 0 0 (f) 14 VALVE SER NUM Simple OctaStimg S 16 r/w C/a 0 0 (f) 20 VALVE MAINT_DATE Simple OctaStimg S 16 r/w C/a 0 0 (f) 21 VALVE_MAINT_DATE Simple							r			O (B)
12 CAL_MIN_SPAN Simple Float N 4 r Cran C70 psilo O (f 13 CAL_UNIT Simple Unsigned132 N 4 r,w Cran O (f 14 CONV_SN Simple Unsigned32 N 4 r,w Cran O (f 15 ACTUATOR AXN Simple OctelSting S 16 r,w Cran OM(f 18 ACTUATOR TYPE Simple OctelSting S 16 r,w Cran OM(f 20 VALVE_MAN Simple OctelSting S 16 r,w Cran OM(f 21 VALVE_MAN Simple OctelSting S 16 r,w Cran OM(f 22 VALVE_MANT_DATE Simple OctelSting S 16 r,w Cran OM(f 23 DEVICE_CANFIG_DATE Simple OctelSting S 16 r,w Cran O							r,w			O (B)
13 CAL_UNIT Simple Unsigned16 N 2 r C/a O (f) 14 COV, SN Simple Unsigned3 N 4 r,w C/a O O (f) 15 ACTUATOR ACTION Simple Unsigned3 S 16 r,w C/a M(f) 16 ACTUATOR ACTION Simple Unsigned3 N 1 r C/a M(f) 17 ACTUATOR, TYPE Simple OctedString S 16 r,w C/a M(f) 19 VALVE_MANN_DATE Simple OctedString S 16 r,w C/a M(f) 20 VALVE_TYPE Simple OctedString S 16 r,w C/a M(f) 21 VALVE_TARL ATE Simple OctedString S 16 r,w C/a M(f) 22 VALVE_TARL Simple OctedString S 16 r,w C/a M(f) 23 DEVICE_CAULB_DATE Simple FlebBACK 4 r,w <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>r</td><td></td><td></td><td>O (B)</td></td<>							r			O (B)
14 CONV_SN Simple Unsigned32 N 4 r.w C/a 0 0 (i 15 ACTUATOR ACTION Simple OctelSting, S 16 r.w C/a Mtt 16 ACTUATOR TYPE Simple OctelSting, S 16 r.w C/a Mtt 18 ACTUATOR TYPE Simple OctelSting, S 16 r.w C/a O O 19 VALVE_SER, NUM Simple OctelSting, S 16 r.w C/a O O 20 VALVE_SER, NUM Simple OctelSting, S 16 r.w C/a Mttt 21 VALVE_MANT_DATE Simple OctelSting, S 16 r.w C/a Mttt 22 VALVE_MANT_DATE Simple OctelSting, S 16 r.w C/a Mttt 23 DEVICE_CANIFIC OATE Simple Float S 4 r.w C/a 0 O(f 24 DEVICE_CANIFIC OATE <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.0 psi</td> <td>O (B)</td>									7.0 psi	O (B)
15 ACTUATOR ACTION Simple Unsigned8 S 1 r.w Cfa MME 16 ACTUATOR MAN Simple OctetString S 16 r.w Cfa MME 17 ACTUATOR TYPE Simple OctetString S 16 r.w Cfa O 19 VALVE_JAAN Simple OctetString S 16 r.w Cfa O O 20 VALVE_TYPE Simple OctetString S 16 r.w Cfa O O 21 VALVE_TABLINT_DATE Simple OctetString S 16 r.w Cfa O O 21 VALVE_CALLB_DATE Simple OctetString S 16 r.w Cfa O ME 23 DEVICE_CALLB_DATE Simple Totat S 4 r.w Cfa O O O O O O O O O O O				0						O (B)
16 ACTUATOR, TYPE Simple OctedString S 16 r,w C/a MME 17 ACTUATOR, TYPE Simple Unsigned8 N 1 r C/a MME 18 ACTUATOR, SER, NUM Simple OctedString S 16 r,w C/a M 20 VALVE_SER, NUM Simple OctedString S 16 r,w C/a M 20 VALVE_TYPE Simple OctedString S 16 r,w C/a M 21 VALVE_MAINT_DATE Simple OctedString S 16 r,w C/a M 22 VALVE_CONFIG_DATE Simple OctedString S 16 r,w C/a M 24 DEVICE_CONFIG_DATE Simple OctedString S 16 r,w C/a 0 M(f 28 RATE_DEC Simple Float S 4 r,w C/a 0 M(f				U					0	()
17 ACTUATOR, TYPE Simple Unsigned8 N 1 r Cia MM 18 ACTUATOR SER, NUM Simple OctetString S 16 r,w Cia 0 0 19 VALVE_MAN Simple OctetString S 16 r,w Cia 0 0 20 VALVE_MAINT_DATE Simple OctetString S 16 r,w Cia MM(E 21 VALVE_MAINT_DATE Simple OctetString S 16 r,w Cia MM(E 23 DEVICE_CONFIG_DATE Simple OctetString S 16 r,w Cia M(E 26 RATE_DEC Simple Float S 4 r,w Cia 0 M(E 27 RATE_INC Simple Unsigned8 1 r Cia 0 O(E 28 LIN_TYPE Simple Unsigned8 1 r Cia 0 O(E										
18 ACTUATOR SER, NUM Simple OctelString S 16 r.w C/a O (1 19 VALVE MAN Simple OctelString S 16 r.w C/a MIE 20 VALVE SER NUM Simple Unsigned8 S 16 r.w C/a MIE 21 VALVE_MAINT DATE Simple OctelString S 16 r.w C/a MIE 22 VALVE_MAINT DATE Simple OctelString S 16 r.w C/a MIE 24 DEVICE CONFIG DATE Simple OctelString S 16 r.w C/a 0 MIE 26 RATE DAC Simple Float S 4 r.w C/a 0						-	1			
19 VALVE_MAN Simple OcteString S 16 r.w C/a Mft 20 VALVE_SER_NUM Simple Unsigned8 S 1 r.w C/a 0 0 (f 21 VALVE_MAINT_DATE Simple Unsigned8 S 1 r.w C/a Mft 23 DEVICE_CALLB_DATE Simple OcteString S 16 r.w C/a Mft 24 DEVICE_CALLB_DATE Simple OcteString S 16 r.w C/a Mft 25 FEEDBACK_VALUE Record DS.33 D 5 r C/a 0 Mft 28 LIN_TYPE Simple Float S 4 r,w C/a 0 0 Mft 29 TAB_ENTRY Simple Unsigned8 S 1 r C/a - O(f 30 TAB_ZY_YALUE Array Float S 1 r						-				
20 VALVE_SER_NUM Simple OutstString S 16 r.w C/a 0 0 0 21 VALVE_TYPE Simple Unsigned8 S 1 r.w C/a Mft 22 VALVE_MAINT_DATE Simple OctetString S 16 r.w C/a Mft 23 DEVICE_CONFIG_DATE Simple OctetString S 16 r.w C/a Mft 24 DEVICE_CONFIG_DATE Simple OctetString S 16 r.w C/a 0 Mft 26 FEEDBACK_VALUE Record DS_33 D 5 r C/a 0 Mft 27 RATE_INC Simple Unsigned8 S 1 r.w C/a 0 0 0 0 28 TAB_ENTY Simple Unsigned8 S 1 r C/a 0 0 29 TAB_ENTY Miln NUMBER Simple <						-	,			
21 VALVE_TYPE Simple Unsigned8 S 1 r.w C/a M(f 22 VALVE_MAINT_DATE Simple OctetString S 16 r.w C/a M(f 23 DEVICE_CALIB_DATE Simple OctetString S 16 r.w C/a M(f 24 DEVICE_CALIB_DATE Simple OctetString S 16 r.w C/a M(f 25 FEEDBACK, VALUE Record DS.33 D 5 r C/a 0 M(f 26 RATE_DEC Simple Hisigned8 S 1 r.w C/a 0 0 (A 0 M(f 2a 0 0 MA 1 r.w C/a 0 0 MA X.Y.VALUE Arasy Float S 4 r C/a - 0(f 30 TAB_ACTUAL NUMBER Simple Unsigned8 S 1 r C/a -									0	
22 VALVE_MAINT_DATE Simple OctefString S 16 r.w C/a Mft 23 DEVICE_CALIB DATE Simple OctefString S 16 r.w C/a Mft 24 DEVICE_CONFIG_DATE Simple OctefString S 16 r.w C/a 0 Mft 25 FEEDBACK_VALUE Record DS_33 D 5 r C/a 0 0 (ft 26 RATE_DEC Simple Float S 4 r.w C/a 0 0 (ft 28 LINTYPE Simple Unsigned8 S 1 r.w C/a - 0 (ft 30 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - 0 (ft 31 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r.w C/a - 0 (ft 34 TAB_OP_CODE Simple Unsigned8 D									U	
23 DEVICE CALIB_DATE Simple OctetString S 16 r.w C/a M(f) 24 DEVICE CONFIG_DATE Simple Record DS_33 D 5 r C/a 0 M(f) 25 FEEDBACK_VALUE Record DS_33 D 5 r C/a 0 M(f) 26 RATE_DEC Simple Float S 4 r,w C/a 0 0 0 0 0 27 RATE_INC Simple Unsigned8 S 1 r,w C/a 0 M(f) 20 TAB_XY_VALUE Array Float S 4 r C/a - 0(f) 31 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - 0(f) 33 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r C/a - 0(f) G/a - 0(f) G/										
24 DEVICE_CONFIG_DATE Simple OctelString S 16 r,w C/a M(f) 25 FEEDBACK_VALUE Record DS_33 D 5 r C/a 0 M(f) 26 RATE_DEC Simple Float S 4 r,w C/a 0 O(f) 27 RATE_INC Simple Unsigned8 S 1 r,w C/a 0 O(f) 28 LIN_TYPE Simple Unsigned8 D 1 r,w C/a - O(f) 30 TAB_AN_VALUE Array Float S 4 r C/a - O(f) 31 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O(f) 33 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r,w C/a - O(f) 34 TAB_OP_CODE Simple Unsigned8 D 1 <td></td> <td></td> <td></td> <td>U U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>()</td>				U U						()
25 FEEDBACK VALUE Record DS_33 D 5 r C/a 0 Mft 26 RATE_DEC Simple Float S 4 r,w C/a 0 O(ft 27 RATE_INC Simple Unsigned8 S 1 r,w C/a 0 O(ft 28 LIN_TYPE Simple Unsigned8 S 1 r,w C/a 0 Mft 30 TAB_X_Y_VALUE Array Float S 4 r C/a - O(ft 31 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - O(ft 32 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O(ft 33 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r C/a - O(ft 34 TAB_ACTUAL_NUMBER Simple Unsigned8 D										
26 RATE_DEC Simple Float S 4 r.w C/a 0 0 (f) 27 RATE_INC Simple Float S 4 r.w C/a 0 0 (f) 28 LIN_TYPE Simple Unsigned8 S 1 r.w C/a 0 0 (f) 29 TAB_NTRY Simple Unsigned8 D 1 r.w C/a - 0(f) 30 TAB_MAX_NUMBER Simple Unsigned8 S 1 r C/a - 0(f) 31 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - 0(f) 34 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r C/a - 0(f) 36 SECONDARY_VALUE Record DS-33 D 5 r C/a 0 (f) 36 SECONDARY_VALUE UNIT Simple Unsigned8 S 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>									0	
27 RATE_INC Simple Float S 4 r,w C/a 0 0 (f 28 LIN_TYPE Simple Unsigned8 S 1 r,w C/a 0 M(f 29 TAB_ENTRY Simple Unsigned8 D 1 r,w C/a - O(f 30 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - O(f 31 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - O(f 32 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r C/a - O(f 34 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r C/a - O(f 35 TAB_ASTATUS Simple Unsigned8 D 1 r C/a O(f G G A r,w C/a O(f G G									-	
28 LIN_TYPE Simple Unsigned8 S 1 r,w C/a 0 M (f) 29 TAB_ENTRY Simple Unsigned8 D 1 r,w C/a - O(E 30 TAB_MX_V_VALUE Array Float S 4 r C/a - O(E 31 TAB_MAX_NUMBER Simple Unsigned8 S 1 r C/a - O(E 32 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O(E 33 TAB_OP_CODE Simple Unsigned8 D 1 r C/a - O(E 36 SECONDARY_VALUE_UNIT Simple Unsigned8 D 1 r,w C/a 2 O C/a O O(E 37 SECONDARY_VALUE_UNIT Simple Unsigned8 S 1 r,w C/a 0 O(E 38 CACUP_RESTORE									-	
29 TAB_ENTRY Simple Unsigned8 D 1 r,w C/a - O(E 30 TAB_X_V_VALUE Array Float S 4 r C/a - O(E 31 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - O(E 32 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O(E 34 TAB_OP_CODE Simple Unsigned8 D 1 r, C/a - O(E 35 TAB_STATUS Simple Unsigned8 D 1 r, C/a - O(E 36 SECONDARY_VALUE Record DS-33 D 5 r C/a O<(G		—							-	
30 TAB_X_Y_VALUE Array Float S 4 r C/a . Off 31 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - Off 32 TAB_MAX_NUMBER Simple Unsigned8 S 1 r C/a - Off 33 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - Off 34 TAB_OP_CODE Simple Unsigned8 D 1 r, C/a - Off 36 SECONDARY_VALUE Record DS-33 D 5 r C/a O (f 37 SECONDARY_VALUE UNIT Simple Unsigned16 N 2 r C/a O (f 38 CAL_TEMPERATURE Simple Unsigned8 1 r,w C/a None O (f 40 COEFF_PRESS_POL array float S 20 r,w C/a									-	
31 TAB_MIN_NUMBER Simple Unsigned8 S 1 r C/a - O(E 32 TAB_MAX_NUMBER Simple Unsigned8 S 1 r C/a - O(E 33 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O(E 34 TAB_ACTUAL_NUMBER Simple Unsigned8 D 1 r C/a - O(E 36 SECONDARY_VALUE Record DS33 D 5 r C/a O(E 37 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a 0 O(E 38 CAL_TEMPERATURE Simple Unsigned8 1 r,w C/a 25 O(E 39 BACKUP_RESTORE Simple Unsigned8 1 r,w C/a 0x11 O(E 41 POLYNOMIAL_PRESS_VERSION Simple Unsigned8 1 r,w							,			
32 TAB_MAX_NUMBER Simple Unsigned8 S 1 r C/a - O(E 33 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O(E 34 TAB_OP_CODE Simple Unsigned8 D 1 r C/a - O(E 35 TAB_ASTATUS Simple Unsigned8 D 1 r C/a - O(E 36 SECONDARY_VALUE Record DS-33 D 5 r C/a O(E 37 SECONDARY_VALUE_UNIT Simple Float N 4 r,w C/a 25 O(E 38 CAL_TEMPERATURE Simple Unsigned8 S 1 r,w C/a None O(E 40 COEFF_PRESS_POL array float S 20 r,w C/a 0x10 O(E 41 POLYNOMIAL_PRESS_TEMP Simple Unsigned8									-	
33 TAB_ACTUAL_NUMBER Simple Unsigned8 S 1 r C/a - O (f 34 TAB_OP_CODE Simple Unsigned8 D 1 r,w C/a - O(f 35 TAB_STATUS Simple Unsigned8 D 1 r C/a - O(f 36 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a 0 O(f 37 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a 0 O(f 38 CAL_TEMPERATURE Simple Unsigned8 S 1 r,w C/a None O(f 40 COEFF_PRESS_POL array float S 20 r,w C/a 0x11 O(f 41 POLYNOMIAL_PRESS_VERSION simple Unsigned8 S 1 r,w C/a 0x10 O(f 43 POLYNOMIAL_SENS_TEMP_ Simple </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>									-	
34 TAB_OP_CODE Simple Unsigned8 D 1 r,w C/a - O(E 35 TAB_STATUS Simple Unsigned8 D 1 r C/a - O(E 36 SECONDARY_VALUE_UNIT Record DS-33 D 5 r C/a O(E 37 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a O(E 38 CAL_TEMPERATURE Simple Unsigned8 S 1 r,w C/a 0 C 40 COEFF_PRESS_POL array float S 44 r,w C/a 0 0 41 POLYNOMIAL_PRESS_VERSION Simple Unsigned8 S 1 r,w C/a 0x11 O(E 42 COEFF_SENS_TEMP_POL array float S 20 r,w C/a 0x10 O(E 44 COEFF_SENS_PRESS_POL array float S										
35 TAB_STATUS Simple Unsigned8 D 1 r C/a - O(E 36 SECONDARY_VALUE Record DS-33 D 5 r C/a O(E 37 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a O(E 38 CAL_TEMPERATURE Simple Float N 4 r,w C/a 25 O(E 39 BACKUP_RESTORE Simple Unsigned8 S 1 r,w C/a None O(E 40 COEFF_PRESS_POL array float S 44 r,w C/a 0x11 O(E 41 POLYNOMIAL_PRESS_VERSION Simple Unsigned8 S 1 r,w C/a 0x10 O(E 42 COEFF_SENS_PRESS_POL array float S 20 r,w C/a 0x10 O(E 43 POLYNOMIAL_PRESS_TEMP_ VERSION Simple Unsigned8				Unsigned						
36 SECONDARY_VALUE Record DS-33 D 5 r C/a O (f 37 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a O (f 38 CAL_TEMPERATURE Simple Float N 4 r,w C/a 25 O (f 39 BACKUP_RESTORE Simple Unsigned8 S 1 r,w C/a None O (f 40 COEFF_PRESS_POL array float S 44 r,w C/a 0x11 O (f 41 POLYNOMIAL_PRESS_VERSION Simple Unsigned8 S 1 r,w C/a 0x11 O (f 42 COEFF_SENS_TEMP_POL array float S 20 r,w C/a 0x10 O (f 43 POLYNOMIAL_PRESS_TEMP_ Simple Unsigned8 S 1 r,w C/a 0x10 O (f 44 COEFF_SENS_PRESSURE Record DS_33 </td <td></td>										
37 SECONDARY_VALUE_UNIT Simple Unsigned16 N 2 r C/a O (f) 38 CAL_TEMPERATURE Simple Float N 4 r,w C/a 25 O (f) 39 BACKUP_RESTORE Simple Unsigned8 S 1 r,w C/a None O (f) 40 COEFF_PRESS_POL array float S 44 r,w C/a 0x11 O (f) 41 POLYNOMIAL_PRESS_VERSION Simple Unsigned8 S 1 r,w C/a 0x11 O (f) 42 COEFF_SENS_TEMP_POL array float S 20 r,w C/a 0x10 O (f) 43 POLYNOMIAL_SENS_TEMP_VALUE_VALU									-	()
38 CAL_TEMPERATURE Simple Float N 4 r,w C/a 25 O (f 39 BACKUP_RESTORE Simple Unsigned8 S 1 r,w C/a None O (f 40 COEFF_PRESS_POL array float S 44 r,w C/a 0x11 O (f 41 POLYNOMIAL_PRESS_VERSION Simple Unsigned8 S 1 r,w C/a 0x11 O (f 42 COEFF_SENS_TEMP_POL array float S 20 r,w C/a 0x10 O (f 43 POLYNOMIAL_PRESS_TEMP_VENSINE Simple Unsigned8 S 1 r,w C/a 0x10 O (f 44 COEFF_SENS_PRESS_POL array float S 20 r,w C/a 0x10 O (f 45 POLYNOMIAL_PRESS_TEMP_VENS Simple Unsigned8 S 1 r,w C/a 0x10 O (f 46 SEN							-			
39BACKUP_RESTORESimpleUnsigned8S1r,wC/aNoneO (f40COEFF_PRESS_POLarrayfloatS44r,wC/a0 (f41POLYNOMIAL_PRESS_VERSIONSimpleUnsigned8S1r,wC/a0x11O (f42COEFF_SENS_TEMP_POLarrayfloatS20r,wC/a0x10O (f43POLYNOMIAL_SENS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (f44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (f45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f46SENSOR_PRESSURERecordDS_33D5rC/aM(fe47CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (fe48CAL_POINT_LO_SENSOR_ PRESSimpleFloatD4r,wC/aM(fe50CAL_CONTROLSimpleUnsigned8N1r,wC/aM(fe51PIEZO_VOLTAGERecordDS_33D5rC/aM(fe52XD_ERRORSimpleUnsigned8N1r,wC/aDisableO (fe<									25	
40COEFF_PRESS_POLarrayfloatS44r,wC/aO (f41POLYNOMIAL_PRESS_VERSIONSimpleUnsigned8S1r,wC/a0x11O (f42COEFF_SENS_TEMP_POLarrayfloatS20r,wC/a0x10O (f43POLYNOMIAL_SENS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (f45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (f47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (f48CAL_POINT_LO_SENSOR_ PRESSimpleFloatD4r,wC/aM(f50CAL_CONTROLSimpleUnsigned8N1r,wC/aM(f51<										
41POLYNOMIAL_PRESS_VERSIONSimpleUnsigned8S1r,wC/a0x11O (f42COEFF_SENS_TEMP_POLarrayfloatS20r,wC/a0x10O (f43POLYNOMIAL_SENS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (f45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (f47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (f48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (f49FEEDBACK_CALSimpleFloatN4rC/aM(f50CAL_CONTROLSimpleUnsigned8N1r,wC/aM(f51<				U					NONE	
42COEFF_SENS_TEMP_POLarrayfloatS20r,wC/aO (f43POLYNOMIAL_SENS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (f45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (f47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (f48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (f49FEEDBACK_CALSimpleFloatD4r,wC/aM(f50CAL_CONTROLSimpleUnsigned8N1r,wC/aM(f51<									0v11	
43POLYNOMIAL_SENS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (fe44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (fe45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (fe46SENSOR_PRESSURERecordDS_33D5rC/aM(fe47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (fe48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (fe50CAL_CONTROLSimpleFloatD4r,wC/aM(fe50CAL_CONTROLSimpleUnsigned8N1r,wC/aM(fe51<										O (B)
43VERSIONSimpleUnsignedsS1r,WC/a0x10O (r44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/a0x10O (r45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (r46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (r46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (r47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (r48CAL_POINT_LO_SENSOR_ PRESSimpleFloatD4r,wC/a3.0 psiO (r50CAL_CONTROLSimpleFloatD4r,wC/aDisableO (r51PIEZO_VOLTAGERecordDS_33D5rC/aM(r52XD_ERRORSimpleUnsigned8N1r,wC/a0x10O (r53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aFalseO (r54EEPROM_FLAGSimpleUnsigned8D1r,wC/aFalseO (r			,			-	.,••			
44COEFF_SENS_PRESS_POLarrayfloatS20r,wC/aO (f45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (f46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (f46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (f47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (f48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (f49FEEDBACK_CALSimpleFloatD4r,wC/aM(f50CAL_CONTROLSimplesUnsigned8N1r,wC/aDisableO (f51PIEZO_VOLTAGERecordDS_33D5rC/aM(f52XD_ERRORSimpleUnsigned8S1rC/a0x10O (f53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aFalseO (f54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (f	43		Simple	Unsigned8	S	1	r,w	C/a	0x10	O (B)
45POLYNOMIAL_PRESS_TEMP_ VERSIONSimpleUnsigned8S1r,wC/a0x10O (B46SENSOR_PRESSURERecordDS_33D5rC/a0x10O (B47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (B48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (B49FEEDBACK_CALSimpleFloatD4r,wC/aM(E50CAL_CONTROLSimplesUnsigned8N1r,wC/aDisableO (B51PIEZO_VOLTAGERecordDS_33D5rC/aM(E52XD_ERRORSimpleUnsigned8S1rC/a0x10O (B53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aFalseO (B54EEPROM_FLAGSimpleUnsigned8D1r,wC/aFalseO (B	44		arrav	float	S	20	r.w	C/a		O (B)
46SENSOR_PRESSURERecordDS_33D5rC/aM(E)47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (E)48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (E)49FEEDBACK_CALSimpleFloatD4r,wC/aM(E)50CAL_CONTROLSimplesUnsigned8N1r,wC/aM(E)51PIEZO_VOLTAGERecordDS_33D5rC/aM(E)52XD_ERRORSimpleUnsigned8S1rC/a0 (E)53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aO (E)54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (E)		POLYNOMIAL_PRESS_TEMP_							0x10	O (B)
47CAL_POINT_HI_SENSOR_ PRESSimpleFloatN4rC/a15.0 psiO (F48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (F49FEEDBACK_CALSimpleFloatD4r,wC/aM(E50CAL_CONTROLSimplesUnsigned8N1r,wC/aDisableO (F51PIEZO_VOLTAGERecordDS_33D5rC/aM(E52XD_ERRORSimpleUnsigned8S1rC/a0x10O (F53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aO (F54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (F	46		Record	DS 33	D	5	r	C/a		M(B)
48CAL_POINT_LO_SENSOR_ PRESSimpleFloatN4rC/a3.0 psiO (E49FEEDBACK_CALSimpleFloatD4r,wC/aM(E50CAL_CONTROLSimplesUnsigned8N1r,wC/aDisableO (E51PIEZO_VOLTAGERecordDS_33D5rC/aM(E52XD_ERRORSimpleUnsigned8S1rC/a0(E53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aO (E54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (E	-	CAL_POINT_HI_SENSOR_				-			15.0 psi	O (B)
49FEEDBACK_CALSimpleFloatD4r,wC/aM(E50CAL_CONTROLSimplesUnsigned8N1r,wC/aDisableO (E51PIEZO_VOLTAGERecordDS_33D5rC/aM(E52XD_ERRORSimpleUnsigned8S1rC/a0x10O (E53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aO (E54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (E	48	CAL_POINT_LO_SENSOR_	Simple	Float	N	4	r	C/a	3.0 psi	O (B)
50CAL_CONTROLSimplesUnsigned8N1r,wC/aDisableO (E51PIEZO_VOLTAGERecordDS_33D5rC/aM(E52XD_ERRORSimpleUnsigned8S1rC/a0x10O (E53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/a0 (E54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (E	49		Simple	Float	D	4	r,w	C/a		M(B)
51 PIEZO_VOLTAGE Record DS_33 D 5 r C/a M(E 52 XD_ERROR Simple Unsigned8 S 1 r C/a 0x10 O (E 53 MAIN_BOARD_SN Simple Unsigned32 S 4 r,w C/a O (E 54 EEPROM_FLAG Simple Unsigned8 D 1 r C/a False O (E									Disable	O (B)
52XD_ERRORSimpleUnsigned8S1rC/a0x10O (f53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aO (f54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (f		_		<u> </u>						M(B)
53MAIN_BOARD_SNSimpleUnsigned32S4r,wC/aO (E54EEPROM_FLAGSimpleUnsigned8D1rC/aFalseO (E		_							0x10	O (B)
54 EEPROM_FLAG Simple Unsigned8 D 1 r C/a False O (B										O (B)
				- U					False	O (B)
	55		array	Unsigned8		50	r,w	C/a		O (B)

Table 3.2 – Table of Transducer Block Parameter Attributes


NOTE

On the extended range version, the standard value will be 30 psi for the parameters 10 (CAL_POINT_HI) and 47 (CAL_POINT_HI_SENSOR).

Transducer Block Visualization Table

Related	Masara ania Danamatan	VIEW_1
Index	Mnemonic Parameter	Number of bytes
1-7	Standard Parameters	13
8	FINAL_VALUE	
9	FINAL_VALUE_SCALING	
10	CAL_POINT_HI	
11	CAL_POINT_LO	
12	CAL_MIN_SPAN	
13	CAL_UNIT	
14	CONV_SN	
15	ACTUATOR_ACTION	
16	ACTUATOR_MAN	
17	ACTUATOR_TYPE	
18	ACTUATOR_SER_NUM	
19	VALVE_MAN	
20	VALVE_SER_NUM	
21	VALVE_TYPE	
22	VALVE_MAINT_DATE	
23	DEVICE_CALIB_DATE	
24	DEVICE_CONFIG_DATE	
25	FEEDBACK_VALUE	
26	RATE_DEC	
27	RATE INC	
28	LIN_TYPE	
29	TAB_ENTRY	
30	TAB X Y VALUE	
31	TAB_MIN_NUMBER	
32	TAB MAX NUMBER	
33	TAB_ACTUAL_NUMBER	
34	TAB_OP_CODE	
35	TAB_STATUS	
36	SECONDARY_VALUE	
37	SECONDARY_VALUE_UNIT	
38	CAL_TEMPERATURE	
39	BACKUP_RESTORE	
40	COEFF_PRESS_POL	
41	POLYNOMIAL_PRESS_VERSION	
42	COEFF_SENS_TEMP_POL	
	POLYNOMIAL_SENS_TEMP_VERSI	
43	ON	
44	COEFF_SENS_PRESS_POL	
AE	POLYNOMIAL_PRESS_TEMP_VERS	
45	ION	
46	SENSOR_PRESSURE	
47	CAL_POINT_HI_SENSOR_PRES	
48	CAL_POINT_LO_SENSOR_PRES	
49	FEEDBACK_CAL	
50	CAL_CONTROL	
51	PIEZO_VOLTAGE	
52	XD_ERROR	
53	MAIN_BOARD_SN	
54	EEPROM_FLAG	
55	ORDERING_CODE	
	TOTAL	13 bytes

Table 3.3 – Transducer Block Visualization Table

Smar ProfibusView or Siemens Simatic PDM configuration software can configure several transducer block parameters, as shown below:

Figure 3.2 – ProfibusView Function Blocks and Transducer Blocks

) 🛍 🏛 🔲 🕺		
P303 (Offline) Parameter	Value	Unit Status
Device Info FP303 (Offline)		
Analog Output		
Display » Manufacture	Info	
Manufacturer	Smar	Loaded
Device ID	007800123	Loaded
» » Define Devic	e Block Tags	
Physical Tag	FP303-P930	Loaded
Transducer Tag	TRANSDUCER BLOCK - FP303	Loaded
Analog Output Tag	ANALOG OUPUT BLOCK	Loaded
Display Tag	DSP BLOCK	Loaded
» » Descriptor, M	essage and Date	
Descriptor		Loaded
Message		Loaded
Installation Date		Loaded
» » Serial Numbe	ers	
Serial Number		Loaded
Converter Serial #	595	Loaded
Actuator Serial #		Loaded
Valve Serial #		Loaded
Main Board Serial #	933	Loaded

Figure 3.3 – Simatic PDM Function Blocks and Transducer Blocks

Use the main menu for the following functions:

- Change the equipment address;
- Parameter upload/download;
- Transducer block, analog output block and display block configuration;
- Converter calibration;
- Software resetting, equipment protection against recording and simulation of transducer block value for the analog output block;
- Data calibration saving and restoring.

The main menu also gives access to the transducer block configuration screen.

				×
	Settings User Table Backu	p Restore		
	Transducer Bl	ock		
The user can select the pre-defined table	Linearization Type	No Linearisation.		
The user can select the type of valve	Valve Type Valve Type	Rotary, part-turn		
Adjusting the fail-safe action open 100%, close 0.0%, stays on the current positionor	Fail Safe Position - Fail Safe Position	Not initialized		
not-initialized	Rate Values SP_Rate (Inc)	0,000		
Final setpoint rates and limits	SP_Rate (Dec)	0,000		
			Write	ielp

Figure 3.4 – ProfibusView Transducer Block Configuration

Configuration

line Configuration	- Transducer	
Settings User Table		
– Select Linearizati	on Type	
Linearization Type	No Linearisation.	
- Select Valve Type		
Valve Type	Rotary, part-turn Virite	
-Select Fail Safe P	osition	
Fail Safe Position	Not initialized Write	
- Set Rate Values -		
SP_Rate (Inc)	0 Write	
SP_Rate (Dec)	0	
OK Ca	ncel	Help

Figure 3.5 – Simatic PDM Transducer Block Configuration

Table Handling

The tables can be loaded and reloaded on the equipments. This table is used mainly for linearization. To execute this procedure, use the following parameters:

- TAB_INDEX
- TAB_X_Y_VALUE
- TAB_MIN_NUMBER
- TAB_MAX_NUMBER
- TAB_OP_CODE
- TAB_STATUS

The TAB_X_Y_VALUE parameter has the pair of values for each table value.

The TAB_INDEX parameter identifies the table element in the X_Y _VALUE parameter (see Figure 3.4).

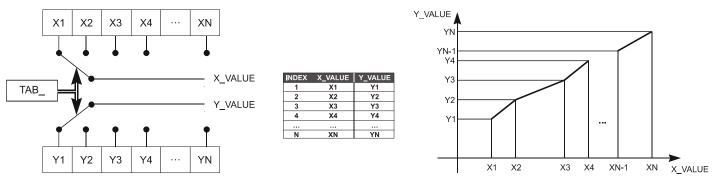


Figure 3.6 - Table Parameters

- TAB_MAX_NUMBER is the maximum table size on an equipment.

- TAB_MIN_NUMBER is the minimum table size on an equipment

Changing an equipment table affects its measuring algorithms, being necessary an indication of the initial and final points. The TAB_OP_CODE parameter controls the table transaction. The equipment provides an acceptability check. The results are indicated on the TAB_STATUS parameter.

The user table is used for current characterization in several points.

The user can configure up to 21 points in percentages. The characterization curve is used to provide a given profile to the output, for example, when the FP303 is controlling a valve with a nonlinear characteristics. The characterization curve, when used, is applied to the input signal before being converted to analog current.

This eventual non-linearity can be corrected with the User Table and only the input and output values must be configured in percentages. Configure a minimum of two points to define the characterization curve. The maximum number of points is 21. Select the number evenly distributed on the desired range or on a part of it requiring more precision. The user must adjust the user-defined table for the valve linearization.

				×	
	Settings User Table Bac	kup Restore			
	Transducer E	lock			
	Nº Points 21 💌				
Enter the input/output —— values	X03: 10,001 Y03: 10,001 X04: 15,001 Y04: 15,001	X09: 40,00 Y09: 40,00 X10: 45,00 Y10: 45,00 X11: 50,00 Y11: 50,00 X12: 55,00 Y12: 55,00 X13: 60,00 Y13: 60,00	X16: 75,001 Y16: X17: 80,001 Y17: X18: 85,001 Y18: X19: 90,001 Y19: X20: 95,001 Y20:	70,001 75,001 80,001 85,001 90,001 95,001 100,01	After configuring the points, press this key to check the - monotonous increase on
			Write	Help	the table

Figure 3.7 – ProfibusView User Table Screen

Configuration

	Configuration - Transd	ucer			×
Settin	gs UserTable				
X1:		Y1	0	X12: 55	Y12: 55
X2:	5	Y2	5	X13: 60	Y13: 60
X3:	10	Y3:	10	X14: 65	Y14: 65
X4:	15	Y4:	15	X15: 70	Y15: 70
X5:	20	Y5:	20	X16: 75	Y16: 75
X6:	25	Y6:	25	X17: 80	Y17: 80
X7:	30	Y7:	30	X18: 85	Y18: 85
X8:	35	Y8:	35	X19: 90	Y19: 90
X9:	40	Y9:	40	X20: 95	Y20: 95
X10:	45	Y10:	45	X21: 100	Y21: 100
X11:	50	Y11:	50	Read table	Write Table
	OK Cancel				Help

Figure 3.8 – Simatic PDM User Table Screen

The Analog Output Block (AO block) is a functional block used by an output transducer block to provide values, scale conversions, safety-fail mechanism and other resources.

The analog output block is a functional block used on equipments working as output elements in a control circuit such as valves, actuators, positioners, etc. The AO block receives a signal from another function block and transfers the results to a transducer block via an internal reference channel.

The output unit and scale will be the same for the transducer block

		×
	Basic Settings Scales / Unit Advanced Settings	
	Analog Output Block	
The user can choose the habitual procedure	Block Mode Target Actual	
The user can set the opening or closing for the actuator action	Positioner/Actuator Action Action Opening	
The user must set both channels for the transducer	Channel Transducer	
	Write	Help

Figure 3.9 - Profibus View Analog Output Block Basic Settings

Offline Configuration - Analog Output	×
Basic Settings Scales/Units Advanced Settings	
Select Block Mode Target Out of Service (O/S) Vrite	
Select Input Channel Transducer Vrite	
Select Output Channel Transducer Write	
Select Positioner/Actuator Action Action Opening Write	
OK Cancel	Help

Figure 3.10 – Simatic PDM Analog Output Block Basic Settings

Configure the input and output scale and unit on the Scale/Units tab. The FP303 most recent models can also execute 3 to 30 psi calibration. The FP303 is factory calibrated from 3 to 15 psi and the examples below are based on this value.

The same calibration sequence is applied on the 3 to 30 psi extended band.

The output unit and scale will be the same for the transducer block.

Analo	g Output Bloc	k	
	Scale of Input Value		
	Upper [EU (100%)]	100,000	1
	Lower [EU (0%)]	0,000	
	Unit (Input)	×]
	-Scale of Output Value	ə	
	Upper [EU (100%)]	15,000	1
	Lower [EU (0%)]	3,000	
	Unit (Output)	psi 💌]

Figure 3.11 – Profibus View Analog Output Block Scale/Units

Offline Configu	ration - a	Analo	og Output					X
Basic Settings	Scales/	Jnits	Advanced Setting	js				
_ Set Scale o	f Input V	alue-						
Upper [EU(100%)]	14		psi	Write	•		
Lower (EU(0%)] [4		psi				
Unit (Input)	ļ	psi	•]				
Set Scale o	of Output	Value	e					
Upper [EU(100%)]	14		psi	Write	9		
Lower (EU(0%)] [4]psi				
Unit (Outpu	t)	psi	-	[
ОК	Cano	el					Help	

Figure 3.12 – Simatic View Analog Output Block Scale/Units

On Advance Settings tab, configure the fail-safe condition.

		×
	Basic Settings Scales / Unit Advanced Settings	
For the fail-safe mode,	Analog Output Block	
the options are: the	Fail Safe Values	
actuator moves to the fail-safe position and	Fail Safe Mode Use Last Usable Value	
stores the last fail-safe values and	Fail Safe Value 0,000	
setpoint, being used as regulating control input	Fail Safe Time 0,000 s	
5 5 1	Define Batch Information	
	Batch ID 0	
	Batch Unit	
	Batch Operation 0	
	Batch Phase 0	
	Write Hel	Ip

Figure 3.13 – Profibus View Analog Output Block Advanced Settings

Configuration

Offline Configuration - Ana	log Output		×
Basic Settings Scales/Unit	Advanced Settings		
_ Set Fail Safe Values —			
Fail Safe Mode Actua	tor goes to fail-safe position 📃 💌		Write
Fail Safe Value 0]%	
Fail Safe Time		s	
Define Batch Information	on		
Batch ID 0]	Write
Batch Unit]	
Batch Operation 0]	
Batch Phase 0]	
	-		
OK Cancel			Help

Figure 3.14 – Simatic PDM Analog Output Block Advanced Settings

	N 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
	Config Mode Block FeedBack
	Analog Output Block
The user can set the block	Target AUTO Actual AUTO
operation mode The user can adjust the setpoint according to the block mode	Output (MAN) Value 3,000 Setpoint from Operator - SP (AUTO) Value 3,000 Status Good (NC) Setpoint Remote station - RCAS_IN (RCAS) Value 0,000 Status Good (NC) From RCAS_OUT to Remote Station
	Value 0,000 Status Good (C) & Not Invited (NI)

Figure 3.15 – Profibus View AO Configuration Block Mode

nfig Block Mode Feedback				
Select Block Mode]	Actual	AUTO	V
Set Output (MAN) /alue 4	psi	Status	Good	v
Set Setpoint from Operator - SP (AU /alue 4	— TO)—]psi	Status	Good, Limit underflow	.
Set Setpoint from Remote Station -	- · ·	Otatua	Pad Navalus (na annunitadian)	
From RCAS_OUT to Remote Station	_ psi n	otatus	Bad, No value (no communication)	
/alue 4	psi	Status	Good (Cascade), Not invited	Ţ
Write				

Figure 3.16– Simatic PDM AO Configuration Block Mode

The values listed between the analog block and the transducer block can be monitored and checked on the Feedback tab.

		×
	Config Mode Block FeedBack	
	Analog Output Block	
	Readback to Transducer	1
	Value -24,542 % Status Bad & Non-specific	<u> </u>
Information on the transducer real conditions and the	Position Closed Status Bad & Non-specific	
analog output block	Setpoint Deviation	
	Value 24,542 %	
		Help

Figure 3.17 – Profibus View Return to the AO Block Configuration

Configuration

Online Configuration - Analog Output - AO- Block Mode (Online)	×
Config Block Mode Feedback	
Readback to Transducer Value D.1040566 psi Status Bad	
Discrete Valve Position Valve Position Intermediate Yalve Position	7
Setpoint Deviation Value 3.896308 %	
Check Back Discrepancy in direction.	
Current State Alarm Sum No Alarm	
	Close Help

Figure 3.18 – Simatic PDM Return to the AO Block Configuration

How to Configure the FP303 Cyclically

The master executes the entire initialization process via the General Station Description (GSD) and this file provides detailed information on the hardware and software version, equipment bus timing and cyclic data exchange.

NOTE			
For more information on the master and slave devices see page www.profibus.org.br.			

The **FP303** has one AO functional block. This block enables the class 1 master to execute the cyclic services and the user must choose the configuration according to its application. If the AO block is in AUTO, the equipment will receive the class 1 master setpoint and status enabling the user to write this value via a class 2 master. In this case, the setpoint status must always be equal to 0x80 ("good") and the following configurations can be chosen:

- SP
- SP/CKECKBACK
- SP/READBACK/POSD
- SP/READBACK/POSD/CKECKBACK
- If the AO block is in RCAS (Remote Cascade) the equipment will only receive the setpoint value and status via the class 1 master and the status will always be equal to 0xc4 ("IA"). The following configurations can be chosen:
 - SP
 - SP/CKECKBACK
 - SP/READBACK/POSD
 - SP/READBACK/POSD/ CKECKBACK
 - RCASIN/RCASOUT
 - RCASIN/RCASOUT/ CKECKBACK
 - SP/READBACK/RCASIN/RCASOUT/POSD/CHECKBACK

See next a typical example with the necessary steps to integrate a **FP303** equipment to a PA system.

- Copy a FP303 GSD file on the PROFIBUS configurator research directory known as GSD.
- Copy a FP303 bitmap file on the PROFIBUS configurator research directory, known as BMP.

- Once the master is chosen, select the communication rate, bearing in mind that when having the couplers, the following rates can be achieved: 45.45 kbits/s(Siemens), 93.75 kbits/s(P+F) and 12Mbits/s(P+F, SK2). With the link device, up to 12Mbits/s may be reached. Add the FP303 and specify its address on the bus.
- Choose the cyclic configuration via parameterization with the GSD file that depends on the application.(Remember that this choice must comply with the AO block operating mode. In this situation pay attention to the status value of the setpoint value, which should be 0x80 (Good) on AUTO mode and 0xc4 (IA) on RCAS.
- The watchdog condition can also be activated to detect any loss of communication between the master and the slave devices. In such case, the equipment enter into a fail-safe condition. Since the FP303 will be on a control final element, it is recommended to configure a fail-safe value.

Calibration

The calibration can be performed by a specific method that compares the reference source connected to the equipment with the desired value. At least five parameters must be used to configure this method: CAL_POINT_HI, CAL_POINT_LO, FEEDBACK_CAL, CAL_MIN_SPAN e CAL_UNIT. These parameters define the upper and the lower values for this equipment, the minimum permissible span value for calibration and the engineering unit selected for the calibration.

Pressure Trim

Using ProfibusView or Simatic PDM

The converter can be calibrated through the CAL_POINT_LO e CAL_POINT_HI parameters.

To start with, a convenient engineering unit must be selected before beginning the calibration. This engineering unit is configured by the CAL_UNIT parameter. After its configuration, the parameter related to the calibration will be converted to this unit.

The CAL_UNIT parameter requires that the engineering unit used for the calibration be chosen from the ones listed below:

UNIT	CODE
inH ₂ O @ 68 ºF	1148
inHg @ 0 ⁰C	1156
ftH ₂ O @ 68 °F	1154
mmH₂O @ 68 ºF	1151
mmHg @ 0 ⁰C	1158
psi	1141
bar	1137
mbar	1138
g/cm ²	1144
k/cm ²	1145
Pa	1130
kPa	1133
torr	1139
atm	1140
MPa	1132
inH ₂ O @ 4 °C	1147
mmH ₂ O @ 4 °C	1150

Go to the Device menu and select the Calibration option.

Next select the "Lower/Upper" options:

Configuration

		×
Select the lower	Lower Upper	
	Transducer Block	
Select the calibration unit	Calibration Unit psi	
Press this key to start the lower – calibration	Lower Calibration Point	Help

Figure 3.19 - ProfibusView

Calibration - Lower/Upper (Online)	×
Lower Upper	
Calibration Unit psi	
Lower Calibration Point	
Close Help	

Figure 3.20 – Simatic PDM

After clicking on Lower Calibration Point, the message below is shown:

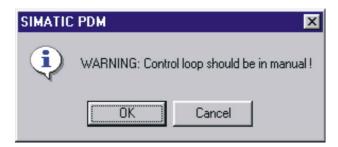


Figure 3.21 – Simatic PDM

Click on OK and enter the new calibration lower value.

Suppose it is 3.0 psi:

Input		
Lower Calibrat	ion Point (from 2.5 to 5 psi):	
,		
<u>O</u> ld Value:	0	
<u>N</u> ew Value:	3.0	
OK]	Cancel

Figure 3.22 – Simatic PDM

Enter the new value, check the pressure meter and write this value:

SIMATIC PDM 🔀
Please, read the measured pressure
Cancel

Figure 3.23 – Simatic PDM

Input		
Please, enter t	ne measured pressure value :	
<u>O</u> ld Value:	0	
<u>N</u> ew Value:	2.97	
ОК		Cancel

Figure 3.24 – Simatic PDM

Repeat the procedure until the pressure equals the desired value:

Select		
	Proceed it again ?	×
Yes No		
ОК		

Figure 3.25 – Simatic PDM

If the calibrated current value is correct, click on "No" and a new warning appears:

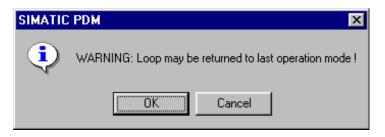


Figure 3.26 – Simatic PDM

After confirmation, the converter will return to normal operation.

The upper calibration procedure is the same as for the lower calibration.

		×
Select the lower or upper calibration	Lower Upper	
	Transducer Block	
Select the unit for calibration	Calibration Unit psi	
Press this key, to start the — upper calibration	Upper Calibration Point	Help

Figure 3.27 – ProfibusView

Calibration - Lower/Upper (Online)	×
Lower Upper	
Calibration Unit psi	
Upper Calibration Point	
Close Help	

Figure 3.28 – Simatic PDM

Calibration - Lower/Upper (Online)	×
Lower Upper	
Calibration Unit psi	
Upper Calibration Point	
Close He	lp

After clicking on "Upper Calibration Point", the following warning will be displayed:

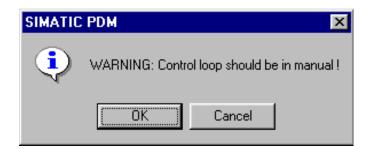


Figure 3.29 – Simatic PDM

Click on OK and enter the upper calibration value desired.

Suppose it is 15.0 psi:

Input		
Upper Calibra	tion Point (from 12 to 16 psi):	
<u>O</u> ld Value:	0	
<u>N</u> ew Value:	15.0	
ОК]	Cancel

Figure 3.30 – Simatic PDM

	NOTE	
When calibrated for up to 30	osi the FP303 upper values will be 13 to 34 psi.	

After entering the new value, check the pressure meter reading and write this value:

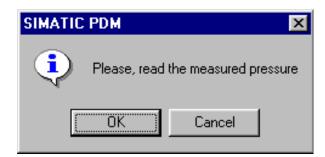


Figure 3.31 – Simatic PDM

Input		
Please, enter	the measured pressure value:	
<u>O</u> ld Value:	0	
<u>N</u> ew Value:	15.57	
OK]	Cancel

Figure 3.32 – Simatic PDM

Repeat the procedure until the pressure equals the desired value:

Select	
Proce	ed it again ?
Yes No	
ОК	

Figure 3.33 – Simatic PDM

If the calibrated value is correct, click on "No" and a new warning appears:

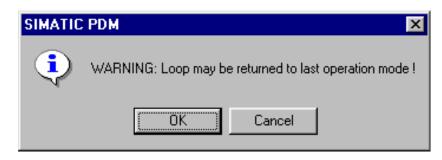


Figure 3.34 – Simatic PDM

After confirmation by the user, the converter will return to normal operation.

NOTE
The same Pressure TRIM procedure applies to the FP303 with a extended band from 3 to 30 psi.

NOTE

At each new calibration, save the existing TRIM data through the BACKUP_RESTORE parameter, by using the "Last Cal Backup".

Temperature Calibration

The CAL_TEMPERATURE parameter is used to adjust the temperature sensor located on the converter body to improve the precision of the sensor temperature measurement. The range accepts -40 °C a +85 °C. The SECONDARY_VALUE parameter indicates the measurement value.

	Temperature Trim	×	
	Transducer Block		
Adjust the temperature calibration point	Calibration Temperature Point 25,000	¶C	
Here the temperature being calibrated can be checked	Value 24,952 PC Status Good (NC)	×	
Check the result of the operation	Operation Result Good		To calibrate, press the "Write" key
		Write Help	

Figure 3.35 – ProfibusView Temperature Calibration

Ca	libration - Temperature (Online]	×
T	emperature		
	Temperature trim		
	Calibration Temperature Point	25	
	Temperature	23.52448	_•c
	Status	Good	-
	Operation Result	Good	-
	Write		
		Close	Help

Figure 3.36 – Simatic PDM Temperature Calibration

Local Adjustment

To enter the local adjustment mode, insert the magnetic key in the "Z" orifice until the display shows "MD". Remove the magnetic key from "Z" and place it in "S". Remove and reinsert the magnetic tool in "S" until the "Loc Adj" message appears. The message is displayed for about 5 seconds. By placing the magnetic key in "Z", the local adjustment or the monitoring tree can be accessed here.

Move to the "LOWER" parameter. To start the calibration, configure the "LOWER" parameter with the magnetic key placed in "S". You may enter with 3.0 psi or a lower value. When the magnetic key is removed from "S", the output will be adjusted on a value near the desired value. Then navigate on the tree until the "FEEDBACK_CAL" FEED parameter and work on it by positioning the magnetic key in "S" until reaching the pressure reference value received.

Continue working on this parameter until reading 3.0 psi or the lower pressure value.

Navigate to the "UPPER" parameter and position the magnetic key in "S" to start the calibration.

It is possible to enter 15.0 psi or 30 psi, for example. When the magnetic key is removed from "S", the output will be adjusted to a value close to the desired value. This will enable to navigate on the tree until FEED (FEEDBACK_CAL) and work on it by positioning the magnetic key on "S" until reaching the desired value received from the reference pressure.

The user must continue to work on this parameter until the reading reaches 15.0 psi or 30 psi.

NOTE

The trim mode output via the local adjustment occurs automatically if the magnetic key is not used for a few seconds.

Limit conditions for calibration are:

Lower:

2.50 psi < NEW_LOWER < 5.0 psi. Otherwise, XD_ERROR=22

Upper:

12.0 psi < NEW_UPPER 16.0 psi. Otherwise, XD_ERROR=22

If the FP303 supports the calibration of 3 to 30, the calibration condition will be from 12 psi to 34 psi.

NOTE

NOTE

|--|

- ... 16: Default Value Set:
- ... 22: Out of Range:
- ... 26: Invalid Calibration Request:
- ... 27: Excessive Correction:

Transducer Display Configuration

The display transducer block can be configured using the **ProfibusView** or the **Simatic PDM**. As the name describes, it is a transducer because its block has an interface with the display circuit.

The display transducer is treated as a normal block by any configuration tool. In other words, this block has some parameters that can be configured according to requirements.

Six parameters can be chosen to be displayed and used for monitoring or local adjustment parameters with the magnetic tool. The seventh parameter is used to access the equipment address. This address can be changed to suit the user application.

Display Block	CD-IV LCD-V LCD-VI Address Toggle
Block Type	Transducer Block
Parameter Type/Index	Feedback to AO
Parameter Element	2
Mnemonic	Гоит
Decimal Step	0,250
Decimal Point Place	2
Access Permission	Monitoring
Alpha/Numerical	Mnemonic 🔽
	Write Help

Figure 3.37 – ProfibusView Display Block

Online Configuration - Display (Or	line)	×
	CD-V CD-VI Cocal Address Change	
Select Block Type	Transducer Block	Write
Select/Set Parameter Type/Index	Feedback to AO	
Set Mnemonic	POS	
Set Decimal Step	0.25	
Set Decimal Point Place	1	
Select Access Permission	Monitoring	
Select Alpha/Numerical	Mnemonic	
Close		Help

Figure 3.38 – Simatic PDM Display Block

Display Transducer Block

The local adjustment is totally configured by the ProfibusView or the Simatica PDM, namely, this block has some parameters and these can be configured according to the applications. They are factory-configured with options to adjust the upper and lower trim, to monitor the input transducer, the output and to check the tag. Among the local adjustment possibilities, the following

options can be chosen: block mode, output monitoring, tag visualization and adjustment of calibration parameters.

The resources on the display transducer and on all of field equipments from the Smar 303 series have the same handling methodology. As long as learned it can be used on any Smar Profibus PA field equipment.

All function blocks and transducers defined according to the Profibus PA have a description of their resources carried out by the DDL – Device Description Language.

This feature allows the configuration tools enabled by the technology of the equipment description service to interpret the equipment resources and render them capable of being configured. The 302 series function blocks and transducers were strictly defined to comply with the Profibus PA specifications in order to be interoperable with other manufacturers.

NOTE To enable the local adjustment using the magnetic tool, the parameters must be prepared via the System Configurator.

There are six groups of parameters that can be pre-configured to enable local adjustment configuration. As an example, suppose that some parameters should not be displayed and the *None* option is selected on the *Select Block Type* parameter. In this case, the equipment won't have the parameters indexed to its block as a valid parameter.

Parameters and Values Definition

Block Type Selection

Block where the parameter is located. User may choose: Transducer Block, Analog Input Block, Totalizing Block, Physical Block or None.

Selection / Adjustment of Parameter / Index Type

This is the index related to the parameter to be executed or only visualized (0, 1, 2...). For each block there are pre-defined indexes. See the "Function Blocks" Manual to learn about the desired indexes and then enter the index.

Mnemonic Adjustment

This mnemonic identifies the parameter and accepts a maximum of 16 characters on the display alphanumerical field. Preferably, select the mnemonic with up to 5 characters, so that it you won't have to rotate it in the display.

Decimal Step Adjustment

This setting increments or decrements decimal units when the parameter is defined by a Float, Float Status Value or by an Integer, when the parameter is in whole units.

Decimal Point Adjustment

The number of digits following the decimal figure (0 to 3 decimal digits).

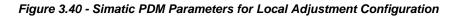
Access Permission Adjustment

This setting allows the user to read in the "Monitoring" option and record when the "action" option is selected. So, the display will show the increment and decrement arrows.

Alphanumerical Adjustment

These parameters include two options: value and mnemonic. On the Value option it is possible to show data in the numerical and alphanumerical fields. Hence, a data higher than 10000 will be shown in the alphanumerical field, being useful when displaying the total on the LCD.

On the Mnemonic option, the display can show the data on the Numeric field and the Mnemonic on the alphanumerical field.


NOTE
For equipment with a software version bigger than or equal to 1.10, check the Programming section usin Local Adjustment.

To visualize a given tag, choose the relative index equal to the tag. To configure other parameters, select the "LCD-II" a "LCD-VI" tab.

		×	
LCD-I LCD-II LCD-III LCD	D-IV LCD-V LCD-VI	Address Toggle	
Display Block			
Block Type	Transducer Block	•	
Parameter Type/Index	Feedback to AO	•	
Parameter Element	2		
Mnemonic	ОЛТ		
Decimal Step	0,250		
Decimal Point Place	2		
Access Permission	Monitoring	-	The "Write" option
Alpha/Numerical	Mnemonic	•	must be selected to update the local
			adjustment programming tree.
			Following that, all the selected parameters
-			will be displayed
		Write Help	

Figure 3.39 – ProfibusView Parameters for Local Adjustment Configuration

Online Configuration - Display (Online)		×
LCD-I LCD-II LCD-III LCD-IV LCD-V	LCD-VI Local Address Change	
Select Block Type Ana	log Output	Write
Select/Set Parameter Type/Index TA	G	
Set Mnemonic TA	6	
Set Decimal Step 0.2	5	
Set Decimal Point Place		
Select Access Permission Mor	itoring	
Select Alpha/Numerical	emonic 🔽	
Close		Help

Online Configuration - Display (O	nline)	X
	CD-V LCD-VI Local Address Change	
Select Block Type	Analog Output	Write
Select/Set Parameter Type/Index	TAG	
Set Mnemonic	TAG	
Set Decimal Step	0.25	
Set Decimal Point Place	1	
Select Access Permission	Monitoring	
Select Alpha/Numerical	Mnemonic	
Close		Help

The Local Address Change tab below allows changing the local address and also Enable/Disable the access to the equipment physical address change.

							×
	LCD-I LCD-II	LCD-III LCD-	-IV LCD-V	LCD-VI	Address	Toggle	
	Display	Block					
When the "Enable" option is selected, the user can change the equipment physical address	Local Addres:	İ	Enable Disable Enable				
					Write	Help	

Figure 3.41 – ProfibusView Parameters for Local Adjustment Configuration

Configuration

Online Configuration - Display (Online)	×
LCD-I LCD-II LCD-III LCD-IV LCD-V LCD-VI LCD-VI	
Local Address Change Enable Write Disable Enable	
Close	Help

Figure 3.42 – Simatic PDM Parameters for Local Adjustment Configuration

When the user leaves the normal operation (monitoring, for example), enters the local adjustment and rotate the magnetic tool to visualize the parameters, the last parameter will be displayed if the parameter has Permission Access equal to Monitoring.

Two parameters will always be displayed at the same time, alternating between the parameters configured on the LCD-II and the last monitoring parameter. If you don't want two simultaneous parameters, choose "None" when configuring the LCD-I. This is valid for versions lower than 1.10. For higher versions, switch between up to six displayed parameters, according to the local adjustment "toggle" parameter.

		×
	LCD-I LCD-II LCD-III LC	D-IV LCD-V LCD-VI Address Toggle
Select "None" so that the last	Display Block	
monitoring parameter	Block Type	None
the LCD	Parameter Type/Index	
	Parameter Element	1
	Mnemonic	TAG
	Decimal Step	0,250
	Decimal Point Place	2
	Access Permission	Monitoring
	Alpha/Numerical	Mnemonic
		with the second
		Write Help

Figure 3.43 – Profibus View Parameters for Local Adjustment Configuration

Online Configuration - Display (On	line)	×
	CD-V LCD-VI Local Address Change	
Select Block Type	None	Write
Select/Set Parameter Type/Index	Pressure (EU)	
Set Mnemonic	SECV1	
Set Decimal Step	0.25	
Set Decimal Point Place	2	
Select Access Permission	Monitoring	
Select Alpha/Numerical	Mnemonic 💌	
Close		Help

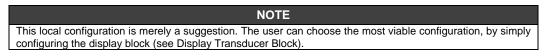
Figure 3.44 – Simatic PDM Parameters for Local Adjustment Configuration

The user can select the "Mode Block" parameter at the LCD. In this case is necessary to select the index equal to "Mode Block":

			×
	LCD-I LCD-II LCD-III LCD-	IV LCD-V LCD-VI Address T	oggle
	Display Block		
This option will display	Block Type	Analog Output	
the Mode Block parameter on the LCD	– Parameter Type/Index	Mode Block	
	Parameter Element	1	
	Mnemonic	MODE	
	Decimal Step	0,250	
	Decimal Point Place	2	
	Access Permission	Monitoring	
	Alpha/Numerical	Mnemonic	
		Write	Неір

Figure 3.45 – Profibus View Parameters for Local Adjustment Configuration

0	Online Configuration - Display (On	line)	×
		CD-V LCD-VI Local Address Change	
l	Select Block Type	Analog Output	Write
I	Select/Set Parameter Type/Index	Mode Block	
l	Set Mnemonic	MODE	
l	Set Decimal Step	0.25	
l	Set Decimal Point Place	2	
l	Select Access Permission	Monitoring 🔽	
I	Select Alpha/Numerical	Mnemonic 🗾	
	Close		Help


Figure 3.46 – Simatic PDM Parameters for Local Adjustment Configuration

Local Adjustment Configuration

The local adjustment is entirely configured by the ProfibusView or Simatic PDM. Therefore, the user chooses the option that best suits his application. The converter is factory-configured with options for lower and upper trim adjustment, input monitoring, transducer output and tag configuration.

Normally, the converter is configured with the configuration tool, but the display functionality works faster on certain parameters, since it does not require connections on the communication electric network. The local adjustment emphasizes the following options: mode block, output monitoring, tag visualization and tuning parameter configuration.

All of Smar Series 303 field equipment present the same methodology for handling the resources of the display transducer. Hence, the user learns one time and can handle all of the Smar field equipments.

The converter has two identification orifices marked with the letters "S" e "Z", which are accessed by two Reed Switches activated by inserting the magnetic tool handle in those orifices.

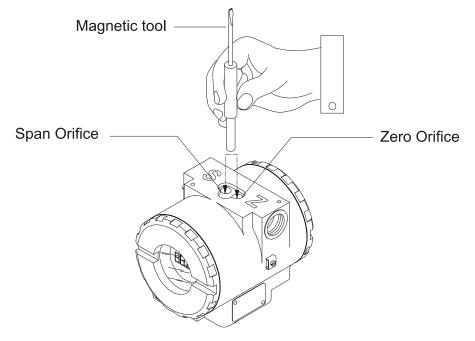


Figure 3.47 – Local Adjustment Orifices

The table 3.4 shows the action accomplished by the magnetic tool when inserted in (Z) and (S) according to the adjustment selected.

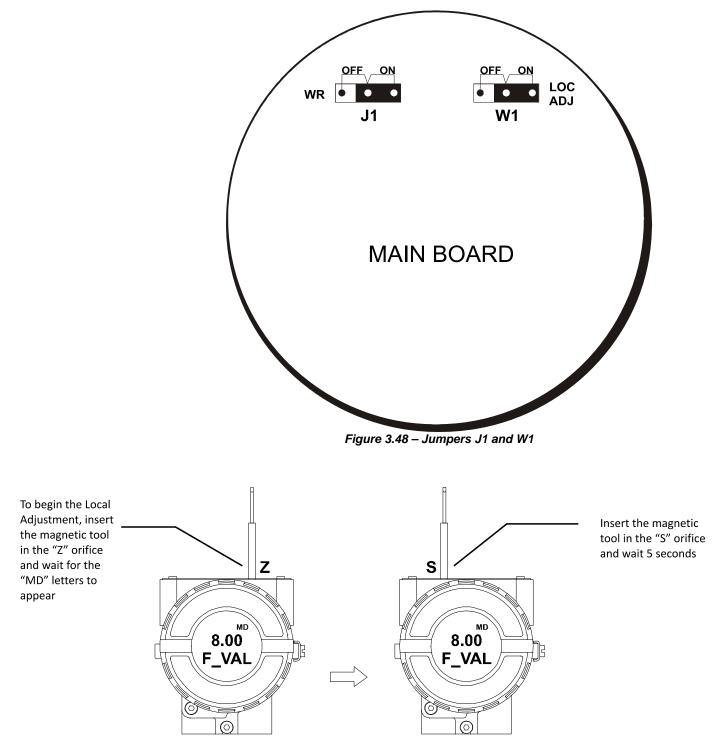
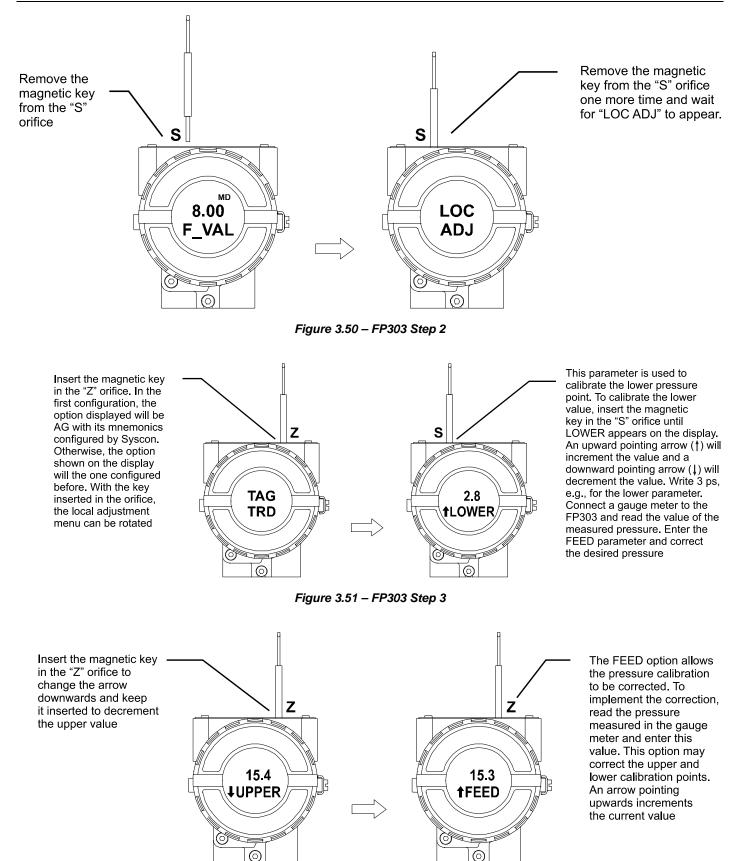
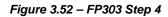

ORIFICE	ACTION
Z	Initializes and moves among the available function.
S	Selects the function shown on the display.

Table 3.4 – Function of Housing Top Orifices

Jumper J1 Connection


If Jumper J1 is connected to the pins under the word ON, the simulation mode will be enabled on the AO block.


Jumper W1 Connection

If Jumper J1 is connected to ON and enabled to execute configurations, the most important block parameters and the pre-configured communication can be adjusted to it.

Figure 3.49 – FP303 Step 1

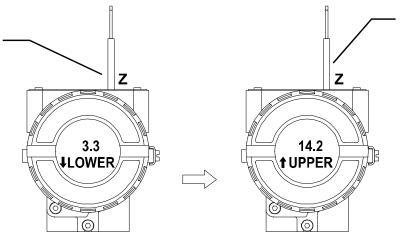


Figure 3.53 – FP303 Step 5

The parameter calibrates the upper current point. To do it, insert the magnetic tool in the "S" orifice until UPPER appears on the display. An upward arrow (†) will increment the value and downward arrow (↓) will decrement it. For example, write 15 psi as upper value. Connect a gauge meter to the FP303 and read the measured pressure value. Enter the FEED parameter and correct the desired pressure

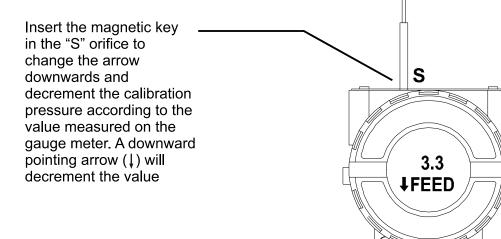
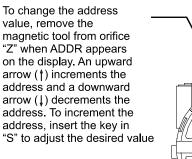



Figure 3.54 – FP303 Step 6

Insert the magnetic key

downwards and insert

and keep the tool in "S"

to decrement the lower

in the "Z" orifice to

change the arrow

value

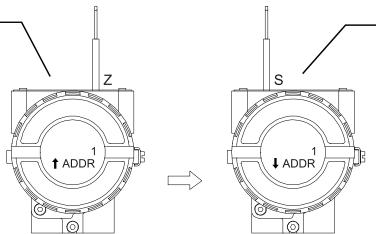
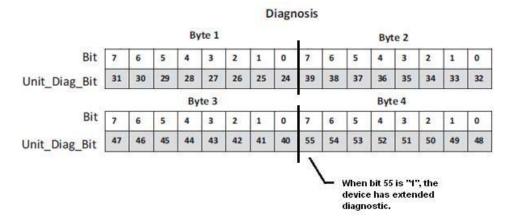


Figure 3.55 – FP303 Step 7

To decrement the address value, insert the magnetic key in "Z" to point the arrow downwards. Insert and keep it in "S" to adjust the desired value

6


Cyclical Diagnosis

Via cyclic communication is possible to verify diagnostics from the **FP303** using the Profibus Master Class 1 or even via acyclic communication via Master Class 2. The Profibus-PA devices provide up to 4 standard diagnoses bytes via Physcial Block (see figure 3.56 and 3.57) and when the most significant bit of the fourth Byte is "1", the diagnose will extend the information in more 6 bytes. These Diagnosis bytes can also be monitored via cyclic tools.

From Physical Block

Len of status bytes	Status Type	Physical Block Slot	Status Appears Disappears	Standard Diagnostic	Extended Diagnostic	
08 - Standard Diag 0E - Ext Diag	FE	01	01 - Appears 02- Disappears	4 bytes	6 bytes vendor specific	

When bit 55 (byte 4, MSB) is "1": the device has extended diagnosti

Figure 3.56 – Cyclical Diagnosis

Figure 3.57 – Cyclic Diagnosis mapping for 4 bytes of Physical Block.

Unit_Diag_bit is described in the GSD file Profibus-PA device.

See below a description part of a GSD file for the 4 bytes and more detail:

```
;----- Description of device related diagnosis: -----
Unit_Diag_Bit(16) = "Error appears"
Unit_Diag_Bit(17) = "Error disappears"
;Byte 01
Unit Diag Bit(24) = "Hardware failure electronics"
Unit_Diag_Bit(25) = "Not used 25"
Unit_Diag_Bit(26) = "Not used 26"
Unit_Diag_Bit(27) = "Electronic temperature alarm"
Unit_Diag_Bit(28) = "Memory error"
Unit_Diag_Bit(29) = "Measurement failure"
Unit_Diag_Bit(30) = "Device not initialized"
Unit_Diag_Bit(31) = "Device initialization failed"
;Byte 02
Unit_Diag_Bit(32) = "Not used 32"
Unit_Diag_Bit(33) = "Not used 33"
Unit_Diag_Bit(34) = "Configuration invalid"
Unit_Diag_Bit(35) = "Restart"
Unit_Diag_Bit(36) = "Coldstart"
Unit_Diag_Bit(37) = "Maintenance required"
Unit Diag Bit(38) = "Characteristics invalid"
Unit_Diag_Bit(39) = "Ident_Number violation"
```

;Byte 03 Unit_Diag_Bit(40) = "Not used 40" Unit_Diag_Bit(41) = "Not used 41" Unit_Diag_Bit(42) = "Not used 42" Unit_Diag_Bit(43) = "Not used 43" Unit_Diag_Bit(44) = "Not used 44" Unit_Diag_Bit(45) = "Not used 45" Unit Diag Bit(46) = "Not used 46" Unit_Diag_Bit(47) = "Not used 47" ;byte 04 Unit_Diag_Bit(48) = "Not used 48" Unit_Diag_Bit(49) = "Not used 49" Unit_Diag_Bit(50) = "Not used 50" Unit_Diag_Bit(51) = "Not used 51" Unit_Diag_Bit(52) = "Not used 52" Unit_Diag_Bit(53) = "Not used 53" Unit_Diag_Bit(54) = "Not used 54" Unit_Diag_Bit(55) = "Extension Available" : Extended Diag Unit_Diag_Bit(56) = "SP range violation" Unit_Diag_Bit(57) = "Digital Analog Convertion range violation" Unit_Diag_Bit(58) = "Sensor pressure failure" Unit_Diag_Bit(59) = "Device is in calibration procedure" Unit_Diag_Bit(60) = "Calibration Error - Check XD_ERROR parameter" Unit_Diag_Bit(61) = "Not used 61" Unit_Diag_Bit(62) = "Not used 62" Unit_Diag_Bit(63) = "Device is in Writing Lock" Unit Diag Bit(64) = "AO Block in Out of Service" Unit_Diag_Bit(65) = "AO Block in Fail Safe" Unit_Diag_Bit(66) = "Not used 66" Unit_Diag_Bit(67) = "Not used 67" Unit_Diag_Bit(68) = "Not used 68" Unit_Diag_Bit(69) = "Not used 69" Unit_Diag_Bit(70) = "Not used 70" Unit_Diag_Bit(71) = "Not used 71" Unit_Diag_Bit(72) = "Not used 72" Unit_Diag_Bit(73) = "Not used 73" Unit_Diag_Bit(74) = "Not used 74" Unit_Diag_Bit(75) = "Not used 75" Unit_Diag_Bit(76) = "Not used 76" Unit_Diag_Bit(77) = "Not used 77" $Unit_Diag_Bit(78) = "Not used 78"$ Unit_Diag_Bit(79) = "Not used 72" Unit_Diag_Bit(80) = "Not used 80" Unit_Diag_Bit(81) = "Not used 81" Unit_Diag_Bit(82) = "Not used 82" Unit_Diag_Bit(83) = "Not used 83" Unit_Diag_Bit(84) = "Not used 84" Unit_Diag_Bit(85) = "Not used 85" Unit Diag Bit(86) = "Not used 86" Unit_Diag_Bit(87) = "Not used 87" Unit_Diag_Bit(88) = "Not used 88" Unit_Diag_Bit(89) = "Not used 89" Unit_Diag_Bit(90) = "Not used 90" Unit_Diag_Bit(91) = "Not used 91" Unit_Diag_Bit(92) = "Not used 92"

Unit_Diag_Bit(93)	= "Not used 93"
Unit_Diag_Bit(94)	= "Not used 94"
Unit_Diag_Bit(95)	= "Not used 95"
Unit_Diag_Bit(96)	= "Not used 96"
Unit_Diag_Bit(97)	= "Not used 97"
Unit_Diag_Bit(98)	= "Not used 98"
Unit_Diag_Bit(99)	= "Not used 99"
Unit_Diag_Bit(100)	= "Not used 100"
Unit_Diag_Bit(101)	= "Not used 101"
Unit_Diag_Bit(102)	= "Not used 102"
Unit_Diag_Bit(103)	= "Not used 103"

NOTE

If the FIX flag is active on LCD, the **FP303** is configured to "Profile Specific" mode. When in "Manufacturer Specific" mode, the Identifier Number is 0x0898. Once the Identifier_Number_Selector is changed from "Profile Specific" to "Manufacturer Specific" or vice-versa, one must wait 5 seconds while the datais saved. Then, turn the **FP303** off and turn it on again. So, the Identifier Number is updated to the communication level. If the equipment is in "Profile Specific" and using the GSD file Identifier Number equals 0x0898, the acyclic communication will work with the tools based on EDDL, FDT/DTM, but no cyclic communication with the Profibus-DP master.

MAINTENANCE PROCEDURE

General

NOTE Equipment installed in hazardous atmospheres must be inspected in compliance with the IEC60079-17 standard.

The PROFIBUS **FP303** pressure converters are intensely tested and inspected before reaching the user. However, they were designed for the possibility to be repaired by the user if necessary.

In general, the user is recommended not to repair the printed circuit boards. Instead, he should keep extra repair parts or acquire them from Smar.

DIAGNOSTICS			
SYMPTOM	PROBABLE CAUSE		
WITHOUT QUIESCENT CURRENT	 PROFIBUS Converter Connections Check the wiring polarity, ground and wiring integrity Power Source Check the power source output. The voltage at the FP303 terminals must be between 9 and 32 Vdc. 		
	Electronic Circuit Failure Check the boards for defects and replace them with spare ones.		
	Network Connection Check the network connections: equipment, power source and terminals. Network Impedance		
NO RESPONSE	Check the network power source and terminators impedance. Converter Configuration Check the communication parameters configuration.		
	Network Configuration Check the network communication configuration.		
	Electronic Circuit Failure Try to replace the converter circuit with spare parts.		
	Output Terminal Connections Check for possible pressure leaks.		
INCORRECT PRESSURE	Pressure Supply Check the air supply. The FP303 input pressure must be between 18 and 100 psi.		
OUTPUT	Calibration Check the converter calibration. Use the FYCAL.		
	Blocked restriction or vent Use the procedures on the following section about Cleaning the Restriction and the vents		

If the current problem is not described on the above table, follow the instructions below.

NOTE				
The "Factory Init" must be performed as the last option to recover the control of the equipment when presenting any problem related to functional blocks or the communication. This operation should only be carried out by authorized personnel and with the process disconnected, since the equipment will be configured with factory default data.				
This procedure erases all the configurations applied on the equipment; after this procedure, it will be necessary to partially download the user configuration via SYSCON.				
Two magnetic tools are used for this operation. On the equipment, remove the screw that fixes the ID tag on the top of the housing to reach the holes marked with the letters "S" and "Z".				
 The operations to be performed are: Turn off the equipment, insert the tools in the magnetic part of holes; Power the equipment; When the display shows "Factory Init", remove the tools; a "S" symbol will appear on the display upper right corner; when it turns off, the equipment reaches indicating the end of the operation. 				
This procedure will recover the entire factory default configuration and eliminate possible problems occurred with the converter communication.				

Disassembly Procedure

Refer to the exploded view. Turn off the power and cut the supply air before dismounting the converter.

Transducer

To remove the electronic housing transducer, disconnect the electric connections and the main board connector on the Field Terminals side.

Loosen the housing locking screw (7) and carefully release the transducer from the electronic housing, without twisting the flat cable.

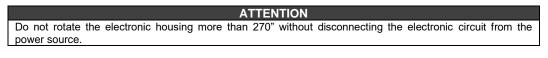


Figure 4.1 – Transducer Rotation

Electronic Circuit

To remove the circuit (5) and the display (4) boards, first loosen the locking screw from the cover (6) on the side opposite to the "Field terminal", and release the cover (1).

Restriction Cleaning Procedures

The instrumentation air is applied to the converter through a restriction. Check periodically the restriction and remove all impurities to ensure the converter high performance.

1. Turn off the converter and remove the air pressure.

Figure 4.2 – Location of the Restriction on the converter

1. Remove the restriction screw with a screwdriver.

Figure 4.3 – Removing the restriction from the converter

- 3. Remove carefully the o-rings;
- 4. Dip the part in oil thinner and dry it with compressed air directly in the smaller hole so that the outlet is on the larger hole.
- 5. Insert the PNE 400-0726 cleaning tool in the smaller hole to clean and avoid obstructions.

Figure 4.4 – Restriction and cleaning needle

Figure 4.5 – Cleaning Procedure Scheme

- 6. Reassemble the O-rings and screw the restriction on the converter.
- 7. The equipment pressurized again.

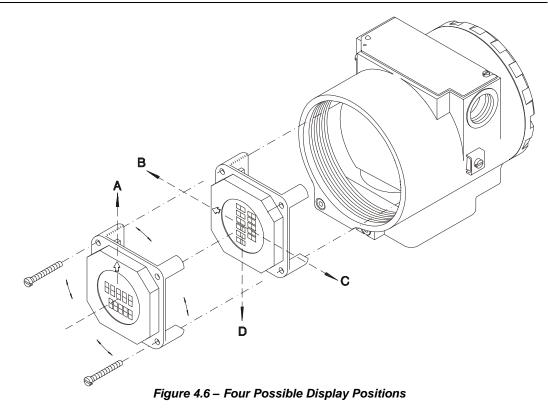
Assembly Procedure

Transducer

Assemble the transducer on the housing by rotating it clockwise until it stops. Then rotate it anticlockwise until setting the housing front with the transducer front. Tighten the transducer locking screw (7) to lock the housing cover.

Exhausting outputs

The pressure is released into the atmosphere through a vent located on the oposite side of the transducer identification plate. Any interference or blocking the vents will compromise the equipment performance. Clean the vents by spraying proper solvents.


Filtering Elements Replacement

The replacement of the converter filters must be carried out within a minimum of 1 (one) year (see exploded view scheme – position 34). A periodical cleaning is recommended at each 6 (six) months. The converter air supply must be clean, dry and non-corrosive, compliant with "Quality Standard for Instrument Air" - (ANSI / ISA S7.0.01 – 1996).

If the air pressure is not in adequate conditions, the user must consider replacing the filtering element more frequently.

Electronic Circuit

Attach the transducer connector and the power source connector to the main board. Attach the display (4) to the main board (5). Verify the four viable mounting positions. The arrow indicates the upward position.

Screw the display on the main board (3).

Then tighten the display cover (1) to complete the assembly procedure. The converter is ready for mounting and testing.

Electric Connections

A plug must be installed on the non-used electric connection to avoid humidity. The plug must comply with the equipment area.

Interchangeability

The main board can be replaced by a similar one for the converter to work normally. There is an EEPROM on the transducer that stores the trim value, hence avoiding the need for a re-calibration.

Packaging Contents

Check the packaging content. The supplied quantity marked with a (*)comply with the number of converters.

- PROFIBUS PA Converter
- Mounting Bracket
- Magnetic tools for local configuration (*)
- Restriction Cleaning Needle (*)
- Instructions Manual (*)
- CD with Smar device library.

Exploded View

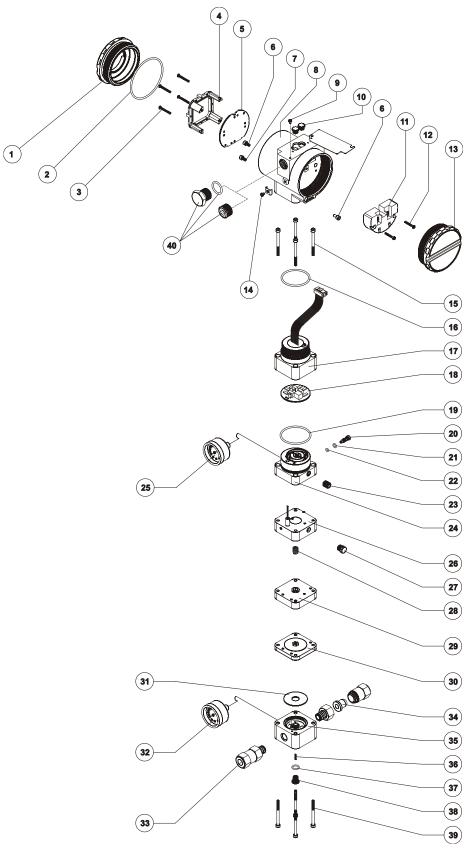


Figure 4.7 – Exploded View

Accessories and Related Products

ACCESSORIES AND RELATED PRODUCTS		
ORDERING CODE	DESCRIPTION	
400-0726	Restriction Cleaning needle	
AssetView FDT	Asset Management With FDT	
BT302	Terminator	
DF47-17	Intrinsic Safety Barrier	
DF73	HSE/PROFIBUS-DP Controller	
DF95/DF97	PROFIBUS DP/PA Controller	
FDI302	Field Device interface	
FYCAL	Calibration Device for Pressure Transducer	
PBI	USB Profibus Interface	
ProfibusView	PROFIBUS PA Device Parameterization Software	
PS302/DF52	Power Supply	
PSI302/DF53	Power Supply Impedance	
SD1	Magnetic Tool for Local Adjustment	

Spare Parts List

SPARE PARTS LIST			
PARTS DESCRIPTION	POSITION	CODE	CATEGORY (NOTE 4)
HOUSING - Aluminum (NOTE 1) - 1/2 - 14 NPT - M20 x 1.5 - PG 13.5 DIN	8 8 8	304-0190 304-0191 304-0192	- - -
HOUSING - 316 Stainless Steel (NOTE 1) - 1/2 - 14 NPT - M20 x 1.5 - PG 13.5 DIN	8 8 8	304-0193 304-0194 304-0195	
Cover without display (included O-ring) - Aluminum - 316 Stainless Steel	1 e 13 1 e 13	204-0102 204-0105	
Cover with Display (O-ring included) - Aluminum - 316 Stainless Steel	1 1	204-0103 204-0106	-
COVER LOCKING BOLT SENSOR LOCKING BOLT - M6 Without Head Screw	6 7	204-0120 400-1121	-
EXTERNAL GROUND BOLT IDENTIFICATION PLATE FIXING BOLT LOCAL ADJUSTMENT PROTECTION COVER	14 9 10	204-0124 204-0116 204-0114	
DIGITAL INDICATOR	4	214-0108	A
TERMINAL INSULATOR	11	400-0059	A
GLL 1007 MAIN BOARD	5	400-0325	A
O-RINGS COVER (NOTE 2) - Buna-N	2	204-0122	В
TERMINAL HOLDING BOLT HOUSING - Housing in 316 Aluminum - Housing in 316 Stainless Steel	12 12	304-0119 204-0119	B B
MAIN BOARD BOLT HOUSING IN ALUMINUM - Units with indicator - Units without indicator	3 3	304-0118 304-0117	B B
MAIN BOARD BOLT HOUSING IN 316 STAINLESS STEEL - Units with indicator - Units without indicator	3 3	204-0118 204-0117	B B

FP303 - Operation, Maintenance, and Instructions Manual

PARTS DESCRIPTION POSITION CODE CATEGORY (NTE 4) CONNECTION COVER - ALUMINUM 15.16.17.18 400-1091 A CONNECTION COVER - ALUMINUM 15.16.17.18 400-1092 - Burnah Ned C-Ing (NOTE 2) 15 400-1092 - Burnah Ned C-Ing (NOTE 2) 15 400-0031 - - Segmided Connection Cover - 316 Stanless Steel 17 400-0031 - - GLI 113 Auting Stand 19.20.21.22.23.24.25 400-046 A - Base and Biok O-Ing (NOTE 2) 19.20.21.22.23.24.25 400-046 A - Base and Biok O-Ing (NOTE 2) 21 344-0155 B - Restriction External O-ing (NOTE 2) 21 344-0155 B - Restriction External O-ing (NOTE 2) 22 344-0155 B - Restriction External O-ing (NOTE 2) 22 344-0155 B - Restriction External O-ing (NOTE 2) 22 344-0156 B - Anatog indicator (Gage - Caton Skeel) 25 400-0335 B - Anatog indicator (Gage - Caton Skeel) 25 400-0496 <th colspan="5">SPARE PARTS LIST</th>	SPARE PARTS LIST				
CONNECTION COVER - ALUMINUM 15.16.17.18 400-1090 A CONNECTION COVER - ALUMINUM 15.16.17.18 400-1091 A CONNECTION COVER - ALUMINUM 15 200-1091 A - Connection Cover - Bit 15 200-1092 - - Stasmitted Connection Cover - 316 Stanless Steel 17 400-0074 - - Call - 114 Analg Board 18 200-0103 E - - Call - 114 Analg Board 19.20.21,22.23.24.25 400-0645 A PIEZO BASE SET - ALUMINUM 19.20.21,22.23.24.25 400-0646 A - Base and Board O-tring (NOTE 2) 21 344-0155 B - Restriction External O-tring (NOTE 2) 21 344-0155 B - Restriction External O-tring (NOTE 2) 23 440-01094 - - Analog indicator (Gage - Caton Steel) 25 200-0003 B - Analog indicator (Gage - Caton Steel) 25 400-0095 - - Analog indicator (Gage - Caton Steel) 26 400-1094 - - Settore BLOCK SET - ALUMINUM 26.27.28	PARTS DESCRIPTION	POSITION	CODE		
CONNECTION COVER - 3/ts 01 ANDLESS STEEL 15 400-1092 - Bansen Nuck Construction Cover - 3/ts Stainless Steel 17 400-0074 - Assembled Connection Cover - 3/ts Stainless Steel 17 400-0074 - GLI 1143 Analog Board 19 400-0084 - PIEZO BASE SET - ALUMINUM 19.20.21.22.23.24.25 400-0685 A PIEZO BASE SET - 316 STAINLESS STEEL 19.20.21.22.23.44.25 400-0686 A - Base and Board Orman (NOTE 2) 20 344-0155 B - Restriction External Oring (NOTE 2) 21 344-0155 B - Restriction External Oring (NOTE 2) 22 344-0155 B - Restriction External Oring (NOTE 2) 22 344-0155 B - Assembled Base - 316 Stainless Steel 26 400-0335 B - Assembled Base - 316 Stainless Steel 26 400-0335 B - Analog indicator (Gage - 316 Stainless Steel) 26 400-0395 B SENSOR BLOCK SET - ALUMINUM 26.27.28 400-1096 - - 340 stainless Steel Sensor Block 26 400-0096	CONNECTION COVER - ALUMINUM	15,16,17,18	400-1090		
• Buna N Neck Oring (NOTE 2) 13 400-1032 F • Assembled Connection Cover - 316 Stainless Steel 17 400-1033 - • GL 113A Analog Board 18 400-1033 - • PIEZO BASE SET - ALUMINUM 19.20.21,22,23,24,25 400-0465 A • Base and Block Oring (NOTE 2) 19 400-0666 A • Base and Block Oring (NOTE 2) 21 344-0165 B • Restriction Internal Oring (NOTE 2) 21 344-0155 B • Restriction Internal Oring (NOTE 2) 23 400-0033 B • Assembled Base - Aluminum 24 400-0033 B • Analog indicator (Gage - Gance Steel) 25 400-0035 A • Analog indicator (Gage - Gance Steel) 25 400-0035 B • Analog indicator (Gage - Gance Steel) 25 400-0035 B • Analog indicator (Gage - Gance Steel) 26 400-0035 F • Analog indicator (Gage - Gance Steel) 26 400-1036 F • Analog indicator (Gage - Gance Steel) 26 400-1036		15,16,17,18	400-1091	А	
- Assembled Connection Cover - Auminum 117 200773 D - Assembled Connection Cover - 316 Stainless Steel 17 400-3031 - PIEZO BASE SET - ALUMINUM 19,20,21,22,23,24,25 400-0646 A PIEZO BASE SET - 316 STAINLESS STEEL 19,20,21,22,23,42,25 400-0646 A - Base and Block Oring (NOTE 2) 19 400-0085 B - Restriction External Oring (NOTE 2) 21 344-0165 B - Restriction External Oring (NOTE 2) 22 344-0165 B - Syntherized Bushing 24 400-0332 A - Analog indicator (Gage - Carbon Steel) 25 200-0400 B - Analog indicator (Gage - Carbon Steel) 25 400-0335 B - Analog indicator (Gage - Carbon Steel) 26,27,28 400-1096 - - Aluminum Set Sensor Block 26 400-0035 B - Sensor Spring 28 400-1096 - - Sensor Spring 28 400-1096 - - Sensor Block Set - 316 Stainless Steel 26 400-1098 <t< td=""><td></td><td>-</td><td></td><td></td></t<>		-			
- Assembled Connection Cover - 316 Stainless Steel 17 400-036 - - GLL 1134 Anolog Board 18 400-036 - PIEZO BASE SET - ALUMINUM 19,20,21,22,23,24,25 400-0645 A PIEZO BASE SET - 316 STAINLESS STEEL 19,20,21,22,23,24,25 400-0646 A - Base and Biock Oring (NOTE 2) 19 344-0155 B - Restriction External Oring (NOTE 2) 21 344-0155 B - Restriction External Oring (NOTE 2) 22 344-0155 B - Assembled Base - Aluminum 24 400-0033 B - Assembled Base - 316 Stainless Steel 25 209-0400 B - Analog indicator (Gage - Cathon Steel) 25 209-0400 B - Analog indicator (Gage - Cathon Steel) 26 400-1096 - - Analog indicator (Gage - Cathon Steel) 26 400-1096 - - Analog indicator (Gage - Cathon Steel) 26 400-1096 - - Analog indicator (Gage - Cathon Steel) 26 400-1096 - - Astano indines Steel Steel Steel 26 <td>- Assembled Connection Cover - Aluminum</td> <td>_</td> <td></td> <td>В</td>	- Assembled Connection Cover - Aluminum	_		В	
- GLL 1143 Analog Board 17 400-1093 - PIEZO BASE SET - ALUMINUM 19,20,21,22,23,24,25 400-0645 A PIEZO BASE SET - 316 STAINLESS STEEL 19,20,21,22,23,24,25 400-0646 A - Base and Block O-ring (NOTE 2) 19 400-0646 B - Restriction Internal O-ring (NOTE 2) 21 344-0155 B - Restriction Internal O-ring (NOTE 2) 23 400-0033 B - Assembled Base - Aluminum 24 400-0033 B - Assembled Base - 316 Stainless Steel 24 400-0035 A - Analog indicator (Gage - Carbon Steel) 25 400-0036 B - Analog indicator (Gage - Carbon Steel) 26 400-0036 B - Autory indicator (Gage - Carbon Steel) 26 400-0036 B - Autory indicator (Gage - Carbon Steel) 26 400-0036 B - Autory indicator (Gage - Carbon Steel) 26 400-1096 - - Autory indicator (Gage - Carbon Steel) 26 400-1096 - - Autory indicator (Gage - Carbon Steel) 26 </td <td></td> <td></td> <td></td> <td>-</td>				-	
PIEZO BASE SET - ALUMINUM 19,20,21,22,32,42,5 400-0645 A PIEZO BASE SET - 316 STAINLESS STEEL 19,20,21,22,23,24,25 400-0646 A - Base and Block C-ing (NOTE 2) 19 90-0085 B - Restriction 20 344-0155 B - Restriction Interal O-ring (NOTE 2) 21 344-0155 B - Restriction Interal O-ring (NOTE 2) 22 344-0155 B - Assembled Base - Jis Stainless Steel 24 400-0033 B - Analog indicator (Gage - Caton Steel) 25 200-0109 - - Analog indicator (Gage - Caton Steel) 26 27,28 400-1096 - - Analog indicator (Gage - Caton Steel) 26 400-1096 - - - Analog indicator (Gage - Caton Steel) 26 400-1096 - - - SENSOR BLOCK SET - 316 STAINLESS STEEL 26 400-1096 - - - Sensor Spring 28 400-1096 - - - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 30 400-1100 - <t< td=""><td></td><td></td><td></td><td></td></t<>					
Base and Block O-ring (NOTE 2) 1 400-0085 B Restriction 20 344-0165 B Restriction Internal O-ring (NOTE 2) 21 344-0165 B Restriction Internal O-ring (NOTE 2) 22 344-0155 B Assembled Base - Aluminum 24 400-0032 A Assembled Base - Alis Binines Steel 24 400-0392 A Analog Indicator (Gage - Carbon Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1096 - SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1095 - - Analog indicator (Gage - Stensor Block 26 400-1096 - - Stemsor Block Steel - Stessor Block 26 400-1095 - - Aluminum Set Sensor Block 26 400-1096 - - Sensor Shing 28 400-1096 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1102 - ASSEMBLED LOWER DIAPHRAGM -	PIEZO BASE SET – ALUMINUM				
- Restriction 20 344-0165 B Restriction Internal C-ring (NOTE 2) 21 344-0155 B - Restriction Internal C-ring (NOTE 2) 22 344-0155 B - Syntherized Bushing 23 400-0075 A - Assembled Base - 316 Stainless Steel 24 400-0075 A - Analog indicator (Gage - Carbon Steel) 25 200-0400 B - Analog indicator (Gage - Carbon Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26.27.28 400-1096 - - Aluminum Set Sensor Block 26 400-1095 - - Aluminum Set Sensor Block 26 400-1097 - - Vent Plug - 304 Stainless Steel 27 400-0654 - - Sensor Spring 28 400-1099 - ASSEMBLED UPPER DIAPHRAGM – ALUMINUM 30 400-1102 - ASSEMBLED LOWER DIAPHRAGM – ALUMINUM 31,32,33,43,36,37,38,39 400-1102 - ASSEMBLED LOWER DIAPHRAGM – 316 STAINLESS STEEL 31,32,33,435,36,37,38,39 400-1103 -	PIEZO BASE SET – 316 STAINLESS STEEL	19,20,21,22,23,24,25	400-0646	А	
- Restriction External O-ring (NOTE 2) 21 344-0156 B - Restriction Internal O-ring (NOTE 2) 22 344-0156 B - Assembled Base - Aluminum 23 400-0075 A - Assembled Base - Aluminum 24 400-0075 A - Analog indicator (Gage - Carbon Steel) 25 209-0400 B - Analog indicator (Gage - Carbon Steel) 25 400-1095 - - Aluminum Set Sensor Block 26 400-1096 - - Aluminum Set Sensor Block 26 400-1096 - - Aluminum Set Sensor Block 26 400-1096 - - Sensor Spring 28 400-1096 - - Sensor Spring 28 400-1096 - - Sensor Spring 29 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 30 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,43,53,63,7,38,39 400-1104 - - O-ring Restriction	- Base and Block O-ring (NOTE 2)	19	400-0085	В	
- Restriction Internal O-ring (NOTE 2) 22 344-0150 B - Syntherized Bushing 23 400-0033 B - Assembled Base – Alurinnum 24 400-0035 A - Analog indicator (Gage - Carbon Steel) 25 209-0400 B - Analog indicator (Gage - Carbon Steel) 25 400-0392 A - Analog indicator (Gage - Carbon Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1095 - - Alurinium Set Sensor Block 26 400-1096 - - Alurinium Set Sensor Block 26 400-1097 - - Vent Plug - 304 Stainless Steel 27 400-1088 - - Ssemble UPPER DIAPHRAGM – ALUMINUM 29 400-1098 - ASSEMBLED UPPER DIAPHRAGM – ALUMINUM 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM – ALUMINUM 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM – 316 STAINLESS STEEL 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM – 316 STAINLESS STEEL 31,32,33,43,56,37,38,39 400-1		20	344-0165		
- Syntherized Bushing 23 400-0033 B - Assembled Base – Aluminum 24 400-0075 A - Analog indicator (Gage - Carbon Steel) 25 209-0400 B - Analog indicator (Gage - Carbon Steel) 25 400-0075 A - Analog indicator (Gage - Carbon Steel) 25 400-0075 A - Analog indicator (Gage - Carbon Steel) 25 400-1096 - - Aluminum Set Sensor Block 26 400-1096 - - Aluminum Set Sensor Block 26 400-1096 - - Sensor Spring 28 400-1098 - - Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1099 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,32,33,43,536,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,43,536,37,38,39 400-1103 - Oring Restriction - 316 Stainless Steel 31 400-1106 -		21	344-0155		
- Assembled Base - Äluminum 24 400-0075 A - Assembled Base - Älu Stainless Steel 24 400-0322 A - Analog indicator (Gage - Carbon Steel) 25 200-0400 B - Analog indicator (Gage - 316 Stainless Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1094 - SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1096 - - Aluminum Set Sensor Block 26 400-1097 - - Vent Plug - 304 Stainless Steel 27 400-068 - - Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,23,34,35,36,37,38,39 400-1104 - - Oring Restriction - Aluminum 31 400-1105 - - Oring Restriction - Aluminum 31 400-1106		22	344-0150		
- Assembled Base - 316 Stainless Steel 24 400-0392 A - Analog indicator (Gage - Carbon Steel) 25 209-0400 B - Analog indicator (Gage - 316 Stainless Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1094 - - Aluminum Set Sensor Block 26 400-1096 - - Aluminum Set Sensor Block 26 400-1096 - - Stressor Spring 28 400-1098 - - Sensor Spring 28 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1099 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,2,3,3,4,35,36,37,38,39 400-1103 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,2,3,3,4,35,36,37,38,39 400-1103 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,2,3,3,4,35,36,37,38,39 400-1103 - Coring Restriction - Aluminum 31 400-1105 - - Oring Restriction - Aluminum 31		23	400-0033	В	
- Analog indicator (Gage - Cathon Steel) 25 209-0400 B - Analog indicator (Gage - 316 Stainless Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1094 - SENSOR BLOCK SET - 316 STAINLESS STEEL 26,27,28 400-1095 - - Aluminum Set Sensor Block 26 400-1096 - - 316 Stainless Steel Set Sensor Block 26 400-1096 - - Ven Plug- 304 Stainless Steel 27 400-1098 - - Sensor Spring 28 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1102 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - - Oring Restriction - Aluminum 31 400-1105 - - Oring Restriction - Aluminum 31 400-1106 - - Oring Restriction - Aluminum 31 31 <td></td> <td>24</td> <td>400-0075</td> <td>A</td>		24	400-0075	A	
- Analog indicator (Gage - 316 Stainless Steel) 25 400-0395 B SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1094 - SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1095 - - Aluminum Set Sensor Block 26 400-1096 - - 316 Stainless Steel Sensor Block 26 400-1098 - - Sensor Spring 28 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1099 - ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1104 - -0-ring Restriction - Aluminum 31,32,23,34,35,36,37,38,39 400-1106 - -0utput Analog Indicator (Gage - Carbon Steel) 32 400-1106 - -0utput Analog Indicator (Gage - 316			400-0392	A	
SENSOR BLOCK SET - ALUMINUM 26,27,28 400-1094 - SENSOR BLOCK SET - 316 STAINLESS STEEL 26,27,28 400-1095 - - Aluminum Set Sensor Block 26 400-1096 - - 316 Stainless Steel Set Sensor Block 26 400-1097 - - Vent Plug: 304 Stainless Steel 27 400-0654 - - Sensor Spring 28 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1099 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,53,6,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,44,53,6,37,38,39 400-1104 - -0-ring Restriction - Aluminum 31,32,33,44,53,6,37,38,39 400-1104 - -0-ring Restriction - Aluminum 31 400-1106 - -0-ring Restriction - 316 Stainless Steel 31,35,38,37,38 400-1106 - -0-ring Restriction - 400 31		25	209-0400		
SENSOR BLOCK SET - 316 STAINLESS STEEL 26,27,28 400-1095 - - Aluminum Set Sensor Block 26 400-1096 - - 316 Stainless Steel Set Sensor Block 26 400-1097 - - Vent Plug - 304 Stainless Steel 27 400-0664 - 2 Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1109 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1102 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1102 - BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,34,35,36,37,38,39 400-1104 - -Oring Restriction - Aluminum 31 400-1105 - - -Oring Restriction - Aluminum 31 31 400-1106 - -Oring Restriction - Aluminum 31,35,36,37,38 400-1107 - 33 116	- Analog indicator (Gage - 316 Stainless Steel)	25	400-0395	В	
- Aluminum Set Sensor Block 26 400-1096 - - Yent Phug - 304 Stainless Steel 27 400-0654 - - Sensor Spring 28 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1099 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1099 - ASSEMBLED LOPER DIAPHRAGM - ALUMINUM 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1104 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,44,35,36,37,38,39 400-1104 - -Oring Restriction - Aluminum 31 400-1105 - -Oring Restriction - Aluminum 31 400-1106 - -Output Analog Indicator (Gage - Carbon Steel) 32 400-1108 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1108 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel	SENSOR BLOCK SET - ALUMINUM	26,27,28	400-1094	-	
- 16 Stainless Steel Set Sensor Block 26 400-1097 - - Vent Plug - 304 Stainless Steel 27 400-0654 - - Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1109 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 30 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1104 - -0-ring Restriction - Aluminum 31 400-1105 - -0-ring Restriction - Aluminum 31 400-1106 - -0-ring Restriction - Aluminum 31 400-1106 - -0-utput Analog Indicator (Gage - Carbo Steel) 32 400-1108 - -0-ting Restriction - Aluminum 31,35,36,37,38 400-1108 - -0-tiput Analog Indicator (Gage - Carbo Steel) 32 400-1108 - -0-tiput Analog Indicator (Gage - 316 Stainless Steel 31,31,	SENSOR BLOCK SET - 316 STAINLESS STEEL	26,27,28	400-1095	-	
· Vent Plug - 304 Stainless Steel 27 400-0654 - · Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM 29 400-1109 - ASSEMBLED UPPER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,34,35,36,37,38,39 400-1104 - -0-ring Restriction - 316 Stainless Steel 31 400-1105 - -0-ring Restriction - 316 Stainless Steel 31 400-1106 - -0-ring Restriction - 316 Stainless Steel 31 400-1106 - -0-ring Restriction - 316 Stainless Steel 31 400-1108 - -0-ring Restriction - 316 Stainless Steel 31 400-1108 - -0-ring Restriction - 316 Stainless Steel 31 400-1109 - -0-stainless Steel Filter -	- Aluminum Set Sensor Block	26	400-1096	-	
- Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM ASSEMBLED UPPER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM ASSEMBLED LOWER DIAPHRAGM - ALUMINUM ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 30 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,43,53,63,73,8,39 400-1103 - BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,4,35,36,37,38,39 400-1104 - -O-ring Restriction - Aluminum 31 400-1105 - -O-ring Restriction - 316 Stainless Steel 31 400-1106 - - Output Analog Indicator (Gage - Carbon Steel) 32 400-1106 - - Output Analog Indicator (Gage - 316 Stainless Steel) 32 400-1107 - - Output Analog Indicator (Gage - 316 Stainless Steel) 32 400-1108 - - Stainless Steel Filter - 1/4" NPT 33 10183/403 - - Filtering Element 34 400-0655 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 3	- 316 Stainless Steel Set Sensor Block	26	400-1097	-	
- Sensor Spring 28 400-1098 - ASSEMBLED UPPER DIAPHRAGM - ALUMINUM ASSEMBLED UPPER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM ASSEMBLED LOWER DIAPHRAGM - ALUMINUM ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,43,53,63,73,8,39 400-1103 - BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,43,53,63,73,8,39 400-1104 - -O-ring Restriction - Aluminum 31,32,33,43,53,63,73,8,39 400-1106 - -O-ring Restriction - 316 Stainless Steel 31 400-1106 - - Output Analog Indicator (Gage - Carbon Steel) 32 400-1106 - - Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES) 32 400-1108 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1101 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1109		27		-	
ASSEMBLED UPPER DIAPHRAGM - ALUMINUM ASSEMBLED UPPER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1099 - ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 30 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1104 - -0-ring Restriction - Aluminum 31 400-1105 - -0-ring Restriction - Alot Stainless Steel 31 400-1106 - -0-ring Restriction - Alot Stainless Steel 31 400-1106 - -0-ring Restriction - Alot Stainless Steel 31 400-1106 - -0-ting Restriction - Alot Stainless Steel 31 400-1106 - -0-ting Restriction - Alot Stainless Steel 32 400-1106 - -0-ting Restriction - 316 Stainless Steel 31 400-1055 - -304 Stainless Steel Filter 1/4" NPT 33 101B3403 - - Assembled Boster Housing - Aluminum 31,35,36,37,3				-	
ASSEMBLED UPPER DIAPHRAGM - 316 STAINLESS STEEL 29 400-1100 - ASSEMBLED LOWER DIAPHRAGM - ALUMINUM 30 400-1101 - ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 30 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1104 - -O-ring Restriction - Aluminum 31 400-1105 - -O-ring Restriction - All Stainless Steel 31 400-1106 - -Output Analog Indicator (Gage - Carbon Steel) 32 400-1106 - - Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES) 32 400-1108 - - 304 Stainless Steel Filter - 14". NPT 33 10183403 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Pin Spring 36 400-1110 <td></td> <td></td> <td></td> <td></td>					
ASSEMBLED LOWER DIAPHRAGM - 316 STAINLESS STEEL 30 400-1102 - BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,34,35,36,37,38,39 400-1104 - -O-ring Restriction - Aluminum 31 400-1105 - - -O-ring Restriction - Aluminum 31 400-1106 - - -O-ring Restriction - 316 Stainless Steel 31 400-1106 - - -Output Analog Indicator (Gage - Carbon Steel) 32 400-1107 - - - Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES) 32 400-1108 - - 304 Stainless Steel Filter - 1/4" NPT 33 101B3403 - - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1110 - - - Pin Spring 36 400-1113 - - - - - Booster O-ring (NOTE 2) 37 400-1114 - - - - - - Pin Spring Bolt				-	
BOOSTER HOUSING SET - ALUMINUM 31,32,33,34,35,36,37,38,39 400-1103 - BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,34,35,36,37,38,39 400-1104 - -O-ring Restriction - Aluminum 31 400-1105 - -O-ring Restriction - 316 Stainless Steel 31 400-1106 - -Output Analog Indicator (Gage - Carbon Steel) 32 400-1107 - - Output Analog Indicator (Gage - S16 Stainless Steel) (NOTES) 32 400-1108 - - Output Analog Indicator (Gage - 316 Stainless Steel) NOTES) 32 400-1108 - - 304 Stainless Steel Filter - 1/4" NPT 33 101B3403 - - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - - Pin Spring 36 400-1113 - - - - - - - - - - - - - - - - - - - <td></td> <td></td> <td></td> <td>-</td>				-	
BOOSTER HOUSING SET - 316 STAINLESS STEEL 31,32,33,34,35,36,37,38,39 400-1104 - -O-ring Restriction - Aluminum 31 400-1105 - -O-ring Restriction - 316 Stainless Steel 31 400-1106 - Output Analog Indicator (Gage - Carbon Steel) 32 400-1107 - Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES) 32 400-1108 - - 304 Stainless Steel Filter - 1/4" NPT 33 101B3403 - - Filtering Element 34 400-6655 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Pin Spring 31 31,35,36,37,38 400-1109 - - Pin Spring 31 31,35,36,37,38 400-1113 - - Booster O-ring (NOTE 2) 37 400-1114 - - - Booster Cover Bolt 39 400-1116 - - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0809 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 -		31,32,33,34,35,36,37,38,39	400-1103	_	
-O-ring Restriction - 316 Stainless Steel31400-1106- Output Analog Indicator (Gage - Carbon Steel)32400-1107- Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES)32400-1107- 304 Stainless Steel Filter - 1/4" NPT33101B3403- Filtering Element34400-0655- Assembled Boster Housing - Aluminum31,35,36,37,38400-1110- Assembled Boster Housing - 316 Stainless Steel31,35,36,37,38400-1110- Pin Spring36400-1113 Spring Bolt38400-1116 Spring Bolt39400-1116 Spring Bolt39400-1116 NTP (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED40400-0808-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST40400-0809-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0809-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-	BOOSTER HOUSING SET - 316 STAINLESS STEEL	31,32,33,34,35,36,37,38,39	400-1104	-	
-O-ring Restriction - 316 Stainless Steel31400-1106- Output Analog Indicator (Gage - Carbon Steel)32400-1107- Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES)32400-1107- 304 Stainless Steel Filter - 1/4" NPT33101B3403- Filtering Element34400-0655- Assembled Boster Housing - Aluminum31,35,36,37,38400-1110- Assembled Boster Housing - 316 Stainless Steel31,35,36,37,38400-1110- Pin Spring36400-1113 Spring Bolt38400-1116 Spring Bolt39400-1116 Spring Bolt39400-1116 NTP (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED40400-0808-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST40400-0809-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0809-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-	-O-ring Restriction - Aluminum	31	400-1105	-	
- Output Analog Indicator (Gage - Carbon Steel)32400-1107 Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES)32400-1108 304 Stainless Steel Filter - 1/4" NPT33101B3403 Filtering Element34400-0665 Assembled Boster Housing - Aluminum31,35,36,37,38400-1109 Assembled Boster Housing - 316 Stainless Steel31,35,36,37,38400-1110 Pin Spring36400-1113 Booster O-ring (NOTE 2)37400-1114 Spring Bolt38400-1115 Booster Cover Bolt39400-1116-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED40400-0808-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-				-	
- Output Analog Indicator (Gage - 316 Stainless Steel) (NOTES) 32 400-1108 - - 304 Stainless Steel Filter- 1/4" NPT 33 101B3403 - - Filtering Element 34 400-0655 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Pin Spring 36 400-1113 - - - Spring Bolt 38 400-1116 - - - Spring Bolt 38 400-1116 - - - Spring Bolt 39 400-1116 - - - Spring Bolt 39 400-1116 - - - Spring Bolt 39 400-1116 - - - V2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0808 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -				-	
- 304 Stainless Steel Filter- 1/4" NPT 33 101B3403 - - Filtering Element 34 400-0655 - - Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Pin Spring 36 400-1113 - - Booster Oring (NOTE 2) 37 400-1115 - - Spring Bolt 38 400-1116 - - Booster Cover Bolt 39 400-1116 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0808 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0809 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - 1/2" NPT INTERNAL SOCKET S		32	400-1108	-	
- Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Pin Spring 36 400-1113 - Booster Oring (NOTE 2) 37 400-1114 - - Spring Bolt 38 400-1116 - - Booster Cover Bolt 39 400-1116 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0808 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0809 - 1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -		33	101B3403	-	
- Assembled Boster Housing - Aluminum 31,35,36,37,38 400-1109 - - Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Pin Spring 36 400-1113 - Booster Oring (NOTE 2) 37 400-1114 - - Spring Bolt 38 400-1116 - - Booster Cover Bolt 39 400-1116 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0808 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0809 - 1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -	- Filtering Element	34	400-0655	-	
- Assembled Boster Housing - 316 Stainless Steel 31,35,36,37,38 400-1110 - - Pin Spring 36 400-1113 - - Booster O-ring (NOTE 2) 37 400-1114 - - Spring Bolt 38 400-1115 - - Booster Cover Bolt 39 400-1116 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0808 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0809 - 1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - 1/2" SOCKET SET PLUG IN 316 SST 40 400-0810 -	- Assembled Boster Housing - Aluminum	31,35,36,37,38	400-1109	-	
- Pin Spring 36 400-1113 - - Booster O-ring (NOTE 2) 37 400-1114 - - Spring Bolt 38 400-1115 - - Booster Cover Bolt 39 400-1116 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED 40 400-0808 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0809 - 1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0809 - 1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - 1/2 S (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -	- Assembled Boster Housing - 316 Stainless Steel	31,35,36,37,38	400-1110	-	
- Spring Bolt38400-1115 Booster Cover Bolt39400-1116-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED40400-0808-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST40400-0809-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-PG13 5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST40400-0810-		36	400-1113	-	
- Booster Cover Bolt39400-1116-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL40400-0808-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST40400-0809-1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810-PG13 5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST40400-0810-		37	400-1114	-	
1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED40400-0808-1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST40400-0809-1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-11-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-12-1/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0583-12-PG13 5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST40400-0810-				-	
1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN BICHROMATIZED40400-08091/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-111/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL40400-0583-111/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-121/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST40400-0583-121/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0583-121/2" NPT INTERNAL SOCKET SET PLUG IN 316 SST40400-0810	- Booster Cover Bolt			-	
1/2" NPT (EX d) INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN BICHROMATIZED CARBON STEEL 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - M20 X 1.5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -		40	400-0808	-	
STEEL 40 400-0583-11 - 1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST 40 400-0583-12 - M20 X 1.5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - PG13 5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -	1/2" NPT (Ex d) INTERNAL SOCKET SET PLUG IN 304 SST	40	400-0809	-	
40 400-0583-12 - M20 X 1.5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 - PG13 5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -		40	400-0583-11	-	
M20 X 1.5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST 40 400-0810 -	1/2" NPT INTERNAL SOCKET SET PLUG IN 304 SST	40	400-0583-12	-	
PG13.5 (Ex.d) EXTERNAL SOCKET SET PLUG IN 316 SST	M20 X 1.5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST	40		-	
40 400-0811 -	PG13.5 (Ex d) EXTERNAL SOCKET SET PLUG IN 316 SST	40	400-0811	-	
3/4" NPT (Ex d) ADAPTER IN 316 SST 40 400-0812 -	3/4" NPT (Ex d) ADAPTER IN 316 SST	40	400-0812	_	

SPARE PARTS LIST					
PARTS DESCRIPTION	POSITION	CODE	CATEGORY (NOTE 4)		
MOUNTING BRACKET FOR 2" PIPE (NOTE 3)					
- Carbon Steel	-	344-0140	-		
- 316 Stainless Steel	-	344-0141	-		
- Carbon Steel Bolts, Nuts, Washers and U-clamp in Stainless Steel	-	344-0142	-		
TRANSDUCER SET - ALUMINUM	15 to 39	400-1111	А		
TRANSDUCER SET - 316 STAINLESS STEEL	15 10 39	400-1112	A		

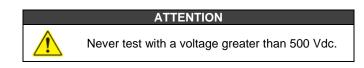
NOTES

1 - Includes terminal isolator, screws (cover lock, ground and terminal isolator) and identification plate without certification.

2 - O-rings are packaged with 12 units.

3 - Including U-Clamp, nuts, bolts and washers.

4 - For category A it is recommended to keep in stock a set for each 25 parts installed and a set for each 20 for category B.


Isolation Test on Equipment Housings

1. Power off the equipment in the field, remove its back cover and disconnect all field cables from the transmitter terminal block, isolating them safely.

2. It is not necessary to remove the main board and display.

3. Jumper (connect) the power terminals (positive and negative) with the cable coming from the Megohmmeter (megger).

4. Configure the megohmmeter for 500 Vdc scale and check the isolation between the housing and the cable that short-circuits all the terminals.

5. The value obtained must be greater than or equal to $2G\Omega$ and the voltage application time must be at least 1 second and at most 5 seconds.

6. If the value obtained by the megohimmeter is below $2G\Omega$, the possibility of moisture entering the electrical connection compartment must be analyzed.

7. It is possible to loosen the two screws that secure the terminal block to the housing and carry out a superficial cleaning and dry the surface well. Afterwards, the isolation can be tested again.

8. If the isolation test still shows that the isolation has been compromised, the housing must be replaced and sent to Nova Smar S.A. for analysis and retrieval.

IMPORTANT

a)For equipment certified Exd and Exi (Explosion Proof and Intrinsically Safe) the standards advise not to carry out repairs in the field of the housing electronic components, only at Nova Smar S.A.

b)In normal use, the housing components must not cause failures that affect its isolation. For this reason, it is important to verify whether there are traces of water entering the housing and, if so, an assessment of the electrical installations and the sealing rings of the covers must be carried out. Nova Smar S.A. has a team ready to support the assessment of facilities, if necessary.

TECHNICAL CHARACTERISTICS

Functional Specifications

Output Signal

Standard: 3 – 15 psi (0.2 – 1.0 Kgf/cm²); Extended: 3 – 30 psi (0.2 – 2.0 Kgf/cm²).

Input Signal

Digital, according to the IEC 1158-2 (H1) standard, voltage mode 31.25 Kbit/s, bus powered.

Power Source

Bus powered: 9-32 Vdc; Quiescent Consumption Current: 12 mA; Output Impedance @7.8 KHz to 39 KHz:

- Without Intrinsic Safety: > 3 k Ω ;
- With Intrinsic Safety: > 400 k Ω ; (in the assumption of a S.I. intrinsic bus on the power source).

Air Supply

18 -100 psi (1.24 - 7 Kgf/cm²) - free from oil, dirt and water.

Indication

Digital indicator (LCD) with 4¹/₂ numerical digits.

Classified Area Certification

According to ordering code.

Temperature Limits

Ambiente:	-40	to	85 °C	-40	to	185 °F	
Storage:	-40	to	90 °C	-40	to	194 °F	
Process:	-10	to	60 °C	-14	to	140 °F	
Digital Display:	-40	to	85 °C	-40	to	185 °F	Without damage.

Humidity Limits

0 to 100% Relative Humidity.

Connecting Time

Approximately 10 sec.

Update Time

Approximately 0.5 sec.

Configuration

Local basic configuration via magnetic tool for converters with local display. Complete configuration with remote configurator (Ex.: **ProfibusView**, by Smar or **Simatic PDM**, by Siemens).

Performance Specifications

Precision

0.4% of Spam; includes hysterisis and stability effects.

Air Consumption

0.30 Nm³/h (0.18 scfm) for 1.24 bar (18 psi) supply; 0.45 Nm³/h (0.26 scfm) for 2.8 bar (40 psi) supply; 0.80 Nm³/h (0.47 scfm) for 7 bar (100 psi) supply.

Maximum Air Flow Capacity

3.40 Nm³/h (2 scfm) for 1.24 bar (18 psi) supply; 6.80 Nm³/h (4 scfm) for 2.8 bar (40 psi) supply; 15.30 Nm³/h (9 scfm) for 7 bar (100 psi) supply.

Ambient Temperature Effect

Error_Sp (pressure sensor) =	Temperature Range (°C) x K (0.07) x Pressure Range psi			
Enol_op (pressure sensor) =	100			
Error_Ps (output pressure) =	Temperature Range (°C) x K (0.06) x Pressure Range psi			
	100			

Air Supply Effect

Negligible.

Vibration Effect

± 0.3 %/g of span during the following conditions:
5-15 Hz for 4 mm constant displacement;
15-150 Hz for 2g;
150 - 2000 Hz for 1g;
According to IEC60770-1 standard.

Electromagnetic Interference Effect

Designed according to the IEC 801, European EN50081 and EN50082 standards.

Physical Specifications

Electric Connections

1/2 - 14 NPT, PG 13.5 DIN; M20 x 1.5 or ½ -14 NPT x ¾ NPT (AI316) with adapter.

Pneumatic Connections

Power supply and output: 1/4 - 18 NPT. Gauge: 1/8 – 27 NPT.

Construction Materials

Injected aluminum with low copper content and finishing in polyester paint or stainless steel 316, with Buna N gaskets on the cover.

Mounting

With additional bracket; may be installed in a 2" pipe or attached to walls or panels.

Equipment Weight

Without display and no mounting bracket:	2.0 Kg (aluminum); 4.3 Kg (stainless steel).
Add for the display:	0.1 Kg.
Add for mounting bracket:	0.6 Kg (carbon steel); 1.3 Kg (stainless steel).

Ordering Code

	BUS PA Digital Indicatior
0	Without indicator
1	With indicator
	COD. Mounting Bracket
	0 Without bracket
	1 Carbon Stell bracket and accessories
!	2 SS316 bracket and accessories
	COD. Electrical Connection
1	0 1/2" - 14 NPT (3)
	1 1/2" - 14 NPT X 3/4 NPT (AI316) - with adapter (3)
i	2 1/2" - 14 NPT X 3/4 BSP (Al316) - with adapter (2)
	3 1/2" - 14 NPT X 1/2 BSP (Al316) - with adapter (2)
	A M20 X 1.5 (5)
i	B PG 13.5 DIN (4)
	SPECIAL OPTIONS
i	COD. Housing Material
	H0 Aluminum (Default) (IP/TYPE)
	H1 SS 316 (IP/TYPE)
i i	H2 Aluminium for saline atmospheres (IPW/TYPE X) (1)
	H3 316 SST for saline atmospheres (IPW/TYPE X) (1)
	H4 Aluminium Copper Free for saline atmospheres (IPW/Type X) (1)
	COD. Identification Plate
	I1 FM: XP, IS, NI, DI I7 EXAM (DMT): Ex-ia; NEMKO: Ex-d
i i	I3 CSA: XP, IS, NI, DI ID NEPSI: Ex-ia, Ex-d
	I4 EXAM (DMT): EX-IA, NEMKO: Ex-d IE NEPSI: Ex-ia
	I5 CEPEL: Ex-D, Ex-ia IM BDSR – GOST: Ex-d, Ex-ia I6 Without certification
	COD. Painting
	P0 Gray Munsell N 6,5
i	P3 Black Polyester
	P8 Without Painting
	P9 Safety Blue Epoxy - Electrostatic Painting
1	COD. TAG Plate
	J0 With tag
	J1 Blank
	J2 According to the user's note
	COD. Special
i I	ZZ See notes
	COD. Range
	G0 3 (min) to 15 (max) psi.
1	G1 3 (min) to 30 (max) psi.
03 1	1 0 H2 I2 P0 J0 * G1 TYPICAL ORDERING CODE
blank for no	o Special Option
	NOTE

CERTIFICATIONS INFORMATION

European Directive Information

Consult www.Smar.com for the EC declarations of conformity and certificates.

Authorized representative/importer located within the Community:

Smar Europe BV De Oude Wereld 116 2408 TM Alphen aan den Rijn Netherlands

ATEX Directive 2014/34//EU - "Equipment for explosive atmospheres"

The EC-Type Examination Certificate is released by DNV Product Assurance AS (NB 2460) and DEKRA Testing and Certification GmbH (NB 0158).

Designated certification body that monitors manufacturing and released QAN (Quality Assurance Notification) is UL International Demko AS (NB 0539).

LVD Directive 2014/35/EU - "Low Voltage"

According the LVD directive Annex II, electrical equipment for use in an explosive atmosphere is outside the scope of this directive.

According to IEC standard: IEC 61010-1 Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 1: General requirements.

PED Directive 2014/68/EU - "Pressure Equipment"

This product is in compliance with Article 4 paragraph 3 of the Pressure Equipment Directive 2014/68/EU and was designed and manufactured in accordance with the sound engineering practice. This equipment cannot bear the CE marking related to PED compliance. However, the product bears the CE marking to indicate compliance with other applicable European Community Directives.

ROHS Directive 2011/65/EU - "Restriction of the use of certain hazardous substances in electrical and electronic equipment"

For the evaluation of the products the following standards were consulted: EN IEC 63000.

EMC Directive 2014/30/EU - "Electromagnetic Compatibility"

For products evaluation, the standard IEC 61326-1 were consulted and to comply with the EMC directive the installation must follow these special conditions:

Use shielded, twisted-pair cable for powering the instrument and signal wiring.

Keep the shield insulated at the instrument side, connecting the other one to the ground.

Hazardous locations general information

Ex Standards:

IEC 60079-0 General Requirements IEC 60079-1 Flameproof Enclosures "d" IEC 60079-7 Increased Safe "e" IEC 60079-11 Intrinsic Safety "i" IEC 60079-18 Encapsulation "m" IEC 60079-26 Equipment with Separation Elements or combined Levels of Protection IEC 60079-31 Equipment dust ignition protection by enclosure "t" IEC 60529 Classification of degrees of protection provided by enclosures (IP Code) IEC 60079-10 Classification of Hazardous Areas IEC 60079-14 Electrical installation design, selection and erection IEC 60079-17 Electrical Installations, Inspections and Maintenance IEC 60079-19 Equipment repair, overhaul and reclamation ISO/IEC 80079-34 Application of quality systems for equipment manufacture

Warning:

Explosions could result in death or serious injury, besides financial damage.

Installation of this instrument in hazardous areas must be in accordance with the local standards and type of protection. Before proceedings with installation make sure that the certificate parameters are in accordance with the classified hazardous area.

Maintenance and Repair

The instrument modification or replaced parts supplied by any other supplier than authorized representative of Smar is prohibited and will void the Certification.

Marking Label

The instrument is marked with type of protection options. The certification is valid only when the type of protection is indicated by the user. Once a particular type of protection is installed, do not reinstall it using any other type of protection.

Intrinsic Safety / Non Incendive application

In hazardous areas with intrinsic safety or or non-incendive requirements, the circuit entity parameters and applicable installation procedures must be observed.

The instrument must be connected to a proper intrinsic safety barrier. Check the intrinsically safe parameters involving the barrier and equipment including the cable and connections. Associated apparatus ground bus shall be insulated from panels and mounting enclosures. Shield is optional, when using shielded cable, be sure to insulate the end not grounded.

Cable capacitance and inductance plus Ci and Li must be smaller than Co and Lo of the Associated Apparatus. It is recommended do not remove the housing covers when powered on.

Explosionproof / Flameproof application

Only use Explosionproof/Flameproof certified Plugs, Adapters and Cable glands.

The electrical connections entries must be connected using a conduit with sealed unit or closed using metal cable gland or metal blanking plug with at least IP66.

Do not remove the housing covers when powered on.

Enclosure

The electronic housing and sensor threads installed in hazardous areas must have a minimum of 6 fully engaged threads.

The covers must be tightening with at least 8 turns, to avoid the penetration of humidity or corrosive gases, and until it touches the housing. Then, tighten more 1/3 turn (120°) to guarantee the sealing.

Lock the housing and covers using the locking screw.

The enclosure contains aluminum and is considered to present a potential risk of ignition by impact or friction. Care must be taken during installation and use to prevent impact or friction.

Degree of Protection of enclosure (IP)

IPx8: Second numeral meaning continuous immersion in water under special condition defined as 10m for a period of 24 hours (Ref: IEC60529).

IPW/ TypeX: Supplementary letter W or X meaning special condition defined as saline environment tested in saturated solution of NaCl 5% w/w at 35°C for a period of 200 hours (Ref: NEMA 250/ IEC60529).

For enclosure with IP/IPW/TypeX applications, all NPT threads must apply a proper water-proof sealant (a non-hardening silicone group sealant is recommended).

Hazardous Locations Approvals

FM Approvals

FM 3D9A2.AX XP Class I, Division 1, Groups A, B, C, D DIP Class II, III Division 1, Groups E, F, G IS Class I, II, III Division 1, Groups A, B, C, D, E, F G NI Class I, Division 2, Groups A, B, C, D T4; Ta = -20 °C < Ta < 60 °C; Type 4, 4X

Entity Parameters Fieldbus Power Supply Input (report 3015629): Vmax = 24 Vdc, Imax = 250 mA, Pi = 1.2 W, Ci = 5 nF, Li = 12 uH Vmax = 16 Vdc, Imax = 250 mA, Pi = 2 W, Ci = 5 nF, Li = 12 uH

Drawing 102A-0119, 102A-1206, 102A-1329

DNV

Explosion Proof (Nemko 00ATEX308X) II 2G Ex d IIC T6 Gb Ambient Temperature: -20 °C to +60 °C Working Pressure: 18-100 psi Options: IP66W or IP66

Special conditions for safe use: Repairs of the flameproof joints must be made in compliance with the structural specifications provided by the manufacturer. Repairs must not be made on the basis of values specified in tables 1 and 2 of EN/IEC 60079-1.

The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2012 General Requirements EN 60079-1:2007 Flameproof Enclosures "d"

Drawing 102A-1274, 102A-1489

DEKRA

Intrinsic Safety (DMT 01 ATEX E 013) Il 2G Ex d [ia] IIC T6 Gb

Supply circuit for the connection to an intrinsically safe FISCO fieldbus-circuit Ui = 24Vdc, Ii = 380 mA, Pi = 5.32 W, Ci \leq 5 nF, Li = neg Ambient Temperature: -20°C \leq Ta \leq +60°C

The Essential Health and Safety Requirements are assured by compliance with: EN 60079-0:2009 General Requirements EN 60079-1:2007 Flameproof Enclosures "d" EN 60079-11:2007 Intrinsic Safety "i" EN 60079-27:2008 Fieldbus intrinsically safe concept (FISCO)

Drawing 102A-1274, 102A-1489

INMETRO NCC

Segurança Intrínseca (NCC 24.0149) Ex db ia IIC T* Gb Ex tb IIIC T* Db Ui = $30 \vee$ Ii = $380 \text{ mA Pi} = 5,32 \vee$ Ci = 5 nF Li = despTamb: - $20 \degree$ C a + $65 \degree$ C para T4 ou T135 °C Tamb: - $20 \degree$ C a + $50 \degree$ C para T5 ou T100 °C Tamb: - $20 \degree$ C a + $40 \degree$ C para T6 ou T85 °C IP66 ou IP66W

Prova de Explosão (NCC 24.0143) Ex db IIC T6 Gb Ex tb IIIC T85 °C Db Tamb: -20 °C a +40 °C IP66 ou IP66W Observações:

O produto adicionalmente marcado com a letra suplementar "W" indica que o equipamento foi ensaiado em uma solução saturada a 5% de NaCl p/p, à 35 °C, pelo tempo de 200 h e foi aprovado para uso em atmosferas salinas, condicionado à utilização de acessórios de instalação no mesmo material do equipamento e de bujões de aço inoxidável ASTM-A240, para fechamento das entradas roscadas não utilizadas.

Os planos de pintura P1 são permitidos apenas para equipamento fornecido com plaqueta de identificação com marcação para grupo de gás IIB.

Este certificado é válido apenas para os produtos dos modelos avaliados. Qualquer modificação nos projetos, bem como a utilização de componentes ou materiais diferentes daqueles definidos pela documentação descritiva dos produtos, sem a prévia autorização, invalidará este certificado.

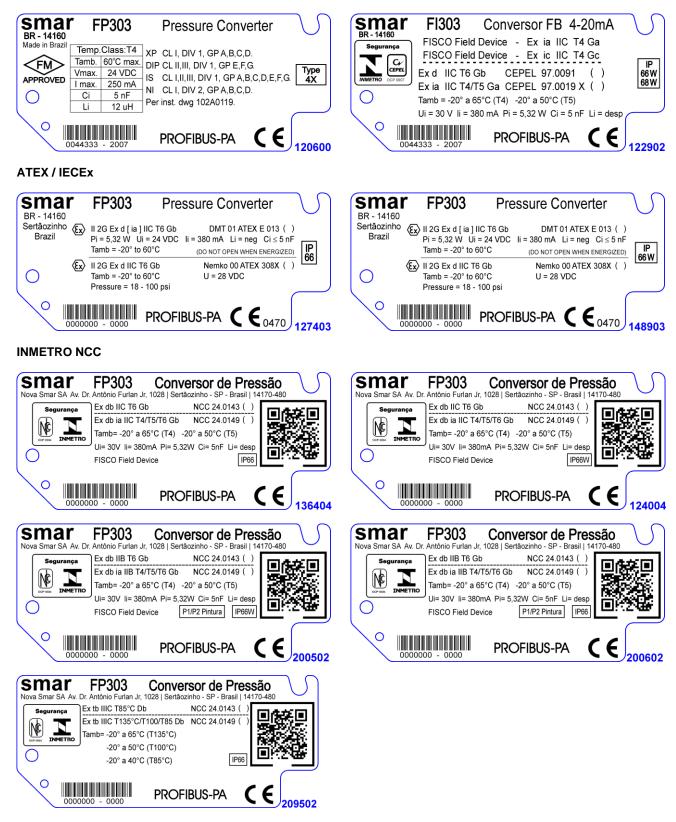
As atividades de instalação, inspeção, manutenção, reparo, revisão e recuperação dos equipamentos são de responsabilidade dos usuários e devem ser executadas de acordo com os requisitos das normas técnicas vigentes e com as recomendações do fabricante.

Normas Aplicáveis:

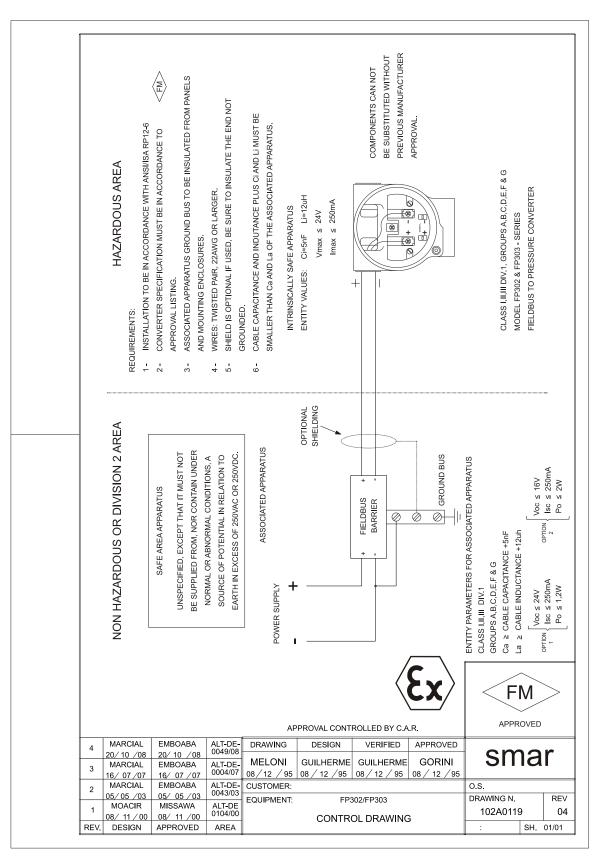
ABNT NBR IEC 60079-0:2020 Atmosferas explosivas - Parte 0: Equipamentos – Requisitos gerais

ABNT NBR IEC 60079-1:2016 Atmosferas explosivas - Parte 1: Proteção de equipamento por invólucro à prova de explosão "d"

ABNT NBR IEC 60079-11:2013 Atmosferas explosivas - Parte 11: Proteção de equipamento por segurança intrínseca "i"


ABNT NBR IEC 60079-31:2022 Atmosferas explosivas - Parte 31: Proteção de equipamentos contra ignição de poeira por invólucros "t"

ABNT NBR IEC 60529:2017 Graus de proteção providos por invólucros (Código IP)


Desenhos 102A1364, 102A1240, 102A2006, 102A2005, 102A2095

Identification Plates

FM Approvals

FM Approvals

Appendix B

sm		SRF – Service Request Form					
311		Fieldbus Pressure Converter - FP					
		GEN	ERAL DATA				
Model: Serial Number: Sensor Number:	FP302() 	FP303 ()		are Version:			
TAG:							
Output Pressure:	3 to 15 psi ()	3 to 30 psi ()				
Configuration:	Magnetic Tool ()	PC ()	Software:		Version:		
Type/Model/Manu	facturer:	APPLI	CATION DATA				
Host System/Mod	el/Manufacturer:						
Conditioner	Dru and Claan			Otheres			
Conditions: Work Pressure:	Dry and Clean(18 psi()) Oil() 40 psi()	Water() 100 psi()	Others: Others :			
			CESS DATA				
Hazardous Area Classification: Interference Type Ambient Tempera		() Chemical (Vibration () Temperatu °C to°	re () Electromagne				
		SITUATIO	IN DESCRIPTION				
		SERVICI	E SUGGESTION				
Adjustment() Other:	С	Cleaning ()	Preventive Mainte	nance ()	Update / Upgrade ()		
		USER I	NFORMATION				
Company:							
Contact:							
Title:							
					Extension:		
					Date://		
	For v	varranty or non-warranty re bout address and contacts	pair, please contact	your representative.			

Returning Materials

If necessary to return the converter and/or configurator to SMAR, simply contact our office, informing the defective instrument serial number, and return it to our factory.

In order to speed up analysis and solution of the problem, the defective item should be returned with a description of the failure observed, with as much details as possible. Other information concerning the instrument operation, such as service and process conditions, is also helpful.

Instruments returned or to be revised outside the warranty term should be accompanied by a purchase order or a quote request.