

FOLHA DE DADOS CONTROLADORES CPU800

Controlador com portas Ethernet redundantes

CPU800 Controlador com portas Ethernet redundantes

INFORMAÇÃO TÉCNICA

Descrição do Produto

O módulo CPU800 é a oitava geração de Controladores Smar que incluem porta de comunicação e capacidade para executar controle discreto via lógica ladder. Além disso, o controlador CPU800 possui duas portas Ethernet para garantir alta disponibilidade de controle e supervisão, e ainda suporta redundância, fornecendo ao processo alto nível de segurança.

Características Principais

Funcionalidades

- Dispositivo de campo HSE
- Modbus Gateway (série e TCP/IP)
- Conectividade Ethernet

Características Técnicas

- 2 portas Ethernet 10/100 Mbps;
- 128 parâmetros podem ser ligados externamente através de links HSE:
- Suporte a Bloco de Função Flexível (FFB);
- Controle discreto através de diagrama de relés;
- Acesso aos módulos de E/S;
- Webserver;
- Modbus Gateway;
- Operação redundante;
- Relógio em Tempo Real (RTC) e watchdog;
- Supervisão de até 2000 pontos por segundo;
- Suporta até 16 módulos HART (DF116/DF117).

Memória Disponível

Memória Volátil	8 Mbytes	
Memória Não Volátil*	4 Mbytes	
EEPROM	1 kbyte	
Flash para programa	4 Mbytes	
Flash para monitor	2 Mbytes	
* Étide a de lecturio interno a grando de de consensa fond		

^{*} É mantida pela bateria interna não recarregável

Controle Discreto

Visando preservar o investimento dos clientes, o módulo CPU800 acessa os mesmos cartões de E/S utilizados no sistema LC700. Através do IMB (Inter-Module Bus), presente no rack onde o módulo CPU está montado, até 16 racks R-700-4A ou DF93 podem ser interconectados, cada um contendo até 4 cartões. Para o caso de ter um controlador redundante, o rack DF92 deverá ser usado. Se for usado o DF92, podem ser usados mais 16 racks DF93. Adicionalmente, pode haver necessidade de outras fontes de alimentação dependendo da quantidade de cartões.

Linha DF de cartões de E/S que podem ser usados

Entradas e saídas digitais
Entradas e saídas analógicas
Temperatura
Contagem de pulsos

O programa do usuário é desenvolvido utilizando diagramas de relés (IEC-61131-3), através da ferramenta LogicView for FFB, disponível dentro do System302. É um ambiente de desenvolvimento completo, permitindo ao usuário criar, editar, simular e supervisionar a aplicação desenvolvida. A interconexão com fieldbus é feita através de um bloco de funções flexível.

Características Gerais do controle discreto na CPU800

Pontos de E/S*	Máximo 1024 pontos discretos ou 512 analógicos
Pontos Auxiliares	Máximo de 4096 pontos
Blocos funcionais para Ladder	Máximo de 2000 blocos **
Arquivo de configuração	Máximo de 120 kbytes**
Ciclo de Execução de Programa para cada 1000 operações booleanas (sem redundância)	10 ms (mínimo)*** 32 ms (típico)****
Ciclo de Execução de Programa com redundância ativada	Acréscimo ao ciclo de execução De 10 ms (típico)***** e até 50 ms (máximo)
Tempo de Execução de Programa	1,1 ms/Kbyte de programa (mínimo) 3,7 ms/Kbyte de programa (típico)

Conjunto total de pontos incluindo entradas e saídas, digitais e analógicas. Quantidade máxima pode variar

A ampla biblioteca de blocos funcionais do LogicView for FFB permite a implementação de controle discreto e/ou contínuo.

A lista completa pode ser vista no manual do LogicView for FFB disponível no site da Smar.

O tamanho do arquivo de configuração e seu tempo de execução podem ser estimados através de uma simples adição dos elementos que compõem o programa. O tempo total de execução será dado pelo tempo de execução da configuração mais o ciclo de execução do programa, ou seja, 10ms.

Operação Redundante

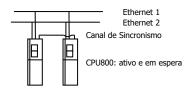
A CPU800 pode operar em modo autônomo (uma CPU800) ou redundante (duas CPU800). No modo redundante, as duas CPU800

de acordo com o tipo de hardware E/S utilizado.

** 120 kbytes e 2000 blocos disponíveis a partir da versão de firmware 2.x. Versões anteriores suportam 60

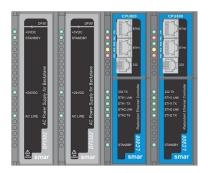
Kbytes e 1200 blocos desponiteda a parti da resado e limitaria 2.2. Versoca antendrea suportami do Kbytes e 1200 blocos respectivamente.

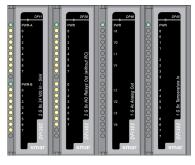
*** Prioridade do bloco flexível 1131 ajustada para Zero (Prioridade muito alta), não fazendo uso de blocos e limitaria para Cero (Prioridade a muito alta), não fazendo uso de blocos e limitaria para como de execução total terá variação dependendo da prioridade ajustada da tarefa que executa o


bloco flexível 1131. Deve ser compatível com a quantidade de blocos e *línks* HSE ***** Tempo de transferência total será proporcional ao tamanho do programa.

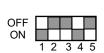
são capazes de se comunicar através de um canal proprietário e alterar informações sobre configuração e status de operação.

Alguns elementos da CPU800 são redundantes:


- Redundância de blocos HSE
- Redundância de link HSE
- Redundância da ladder
- Redundância da supervisão
- Redundância de mídia Ethernet


Topologia para interconexão da CPU800 em redundância:

Características Gerais da Redundância


Para redundância de acesso em cartões de E/S, é necessário o uso de um rack especial (DF78). As duas fontes de alimentação e as duas CPU800 devem ser montadas neste rack, nesta ordem. Os módulos restantes podem ser interligados como de costume.

Bateria Interna

O CPU800 Real Time Clock (RTC) e sua RAM não volátil (NVRAM) são mantidos por uma bateria não recarregável quando há falta de fornecimento externo. Esta bateria pode ser ativada ou desativada, dependendo da posição do interruptor 1, na parte de trás do CPU800. Para habilitar a bateria, deixe a chave 1 como a figura a seguir:

- 1) Bateria ligada
- 2) Manter nessa posição
- 3) Simular
- 4) Watchdog ON
- 5) Manter nessa posição

Nesta configuração, quando houver falta de energia, o RTC e a NVRAM serão fornecidos pela bateria, permitindo a retenção de todos os dados de configuração. No caso de armazenamento do equipamento, é recomendado que a bateria seja desligada (interruptor 1 na posição OFF).

Características da bateria

Tipo de bateria	Bateria Panasonic BR-
ripo de bateria	2/3AE2SP de Lithium
Capacidade	1200 mAh
Dispositivos mantidos pela	RTC e NVRAM
bateria	RICENVRAM
Vida útil mínima	8 anos (carga típica de 17uA)
Vida útil máxima	49 anos (carga típica de
vida utii maxiiia	2,8uA)
Tensão	3 V (submeter para revisão
	quando abaixo de 2,5 V)

Portas e Canais de Comunicação

Porta Ethernet

Taxa de Comunicação	10/100 Mbps
Norma	IEEE 802.3u
Isolação	150Vrms
Modo de Operação	Full-duplex
Conector	RJ45 com blindagem*

^{*} Aterrado ao trilho do rack que está instalado a CPU800.

Porta Modbus

Taxa de Comunicação (Máxima)*	115200 bps
(Maxilla)	
Padrão	EIA-232
Conector**	RJ12 com blindagem
Corrente Máxima***	0.5A @ 3.3V

^{*} Há um aumento na taxa de erros à medida que aumentamos a taxa de comunicação acima de

Porta de Redundância

Taxa de Comunicação (Máxima)*	115200 bps
Padrão	EIA-232
Conector**	RJ12 com blindagem
Corrente Máxima***	0 5A @ 3 3V

^{*} Taxa para informação de controle. Tráfego de dados pela Ethernet.

Relé de Falha

Tipo de Saída	Relé de estado sólido, normalmente fechado (NC), isolado
Tensão Máxima	30 VDC
Corrente Máxima	200 mA
Proteção contra Sobrecarga	Não disponível. Deve ser
	provido externamente
Operação Normal	Contatos abertos
Condição de Falha	Contatos fechados
Comprimento máximo da fiação ligada ao relé	30m

Observação: O fornecimento de energia para a carga não deve ser feito a partir de uma rede externa (fora do painel).

¹⁹²⁰⁰ bps. Em muitas situações estes erros podem ser aceltáveis e não percebidos pela supervisão.

** Aterrado ao trilho do rack que está instalado a CPU800.

*** Protegido internamente por fusível de estado sólido.

Aterrado ao trilho do rack que está instalado a CPU800 *** Protegido internamente por fusível de estado sólido

Barramento IMB

Tensão	5 VDC
Barramento	8 bits
Sinal de falha	Sim
Troca Quente	Sim
Redundância no acesso do	Sim, mas somente usando o
bus	rack DF78 ou DF92

Características do Módulo

Controlador

CPU	Família ARM7TDMI
Barramento	32bits
Arquitetura	RISC
Performance	40 MIPS
Cache CPU	8kbytes
Clock	40 MHz
DMA	10 canais
Ethernet	MAC 10/100 integrado
Watchdog	Sim (200ms de ciclo)
Tensão de Operação	3,3V para E/S

Módulo

Tensão de Operação	5V (± 5% de tolerância)
Corrente Típica	550 mA
Consumo Real	2,75 W
Temperatura de Operação – Meio Ambiente	0 a 60° C (IEC 1131)
Temperatura de Armazenamento	-20 a 80° C (IEC 1131)
Umidade Relativa do Ar	5% a 95% (sem
(Operação)	condensação)
Modo de Resfriamento	Convecção de Ar
Dimensões (A x L x P,mm)	149x40x138 (sem invólucro)

Certificação Elétrica

A CPU800 segue as especificações dos testes de imunidade aplicados aos equipamentos em instalações industriais, de acordo com o padrão IEC61326:2002.

Enclose

Descarga eletrostática (IEC61000-4-2)	4 kV/8 kV de contato/ar
Campo EM	10 V/m
(IEC61000-4-3)	
Campo magnético de	30 A/m
frequência de potência	
nominal (IEC61000-4-8)	

Energia CA

Queda de tensão/interrupções curtas (IEC61000-4-11)	0,5 ciclo, cada polaridade/100%
Burst (IEC61000-4-4)	2 kV
Surge (IEC61000-4-5)	1 kV/2 kV
Conducted RF (IEC61000- 4-6)	3 V

Potência DC

Burst	2 kV
(IEC61000-4-4)	
Surge	1 kV/2 kV
(IEC61000-4-5)	
Conducted RF (IEC61000-	3 V
4-6)	

Sinal/controle de E/S

Burst	1 kV
(IEC61000-4-4)	
Surge	1 kV
(IEC61000-4-5)	
Conducted RF (IEC61000-	3 V
4-6)	

Sinal/controle de E/S conectado diretamente à rede de fornecimento de energia

Burst (IEC61000-4-4)	2 kV
Surge (IEC61000-4-5)	1 kV/2 kV
Conducted RF (IEC61000- 4-6)	3 V

Limites de Emissão

Enclose

30 a 230 MHz	40 dB (uV/m) quase-pico,
(CISPR 16-1, CISPR 16-2)	medido a 10m de distância
239 a 1000 MHz	40 dB (uV/m) quase-pico,
(CISPR 16-1, CISPR 16-2)	medido a 10m de distância

Rede CA

0,15 a 0,5 MHz	79 dB (uV) quase-pico
(CISPR 16-1, CISPR 16-2)	Média 66 dB (uV)
0,5 a 5 MHz	73 dB (uV) quase-pico
(CISPR 16-1, CISPR 16-2)	Média de 60 dB (uV)
5 a 30 MHz	73 dB (uV) quase-pico
(CISPR 16-1, CISPR 16-2)	Média de 60 dB (uV)

Nota: Para as atualizações mais recentes, consulte o site da Smar: $\underline{\mathbf{www.smar.com.br}}$

FOLHA DE DADOS CONTROLADORES CPU800

Rua Dr. Antônio Furlan Junior, 1028 - Sertãozinho, SP - CEP: 14170-480 orcamento@smar.com.br | +55 (16) 3946-3599 | www.smar.com.br

